Crowdsourced Estimation of Collective Just Noticeable Difference for Compressed Video with Flicker Test and QUEST+

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2023
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
JND - basierte perzeptuelle Videoqualitätsanalyse und -modellierung
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Preprint
Publikationsstatus
Submitted
Wird erscheinen in
Zusammenfassung

The concept of video-wise just noticeable difference (JND) was recently proposed to determine the lowest bitrate at which a source video can be compressed without perceptible quality loss with a given probability. This bitrate is usually obtained from an estimate of the satisfied used ratio (SUR) at each bitrate, respectively encoding quality parameter. The SUR is the probability that the distortion corresponding to this bitrate is not noticeable. Commonly, the SUR is computed experimentally by estimating the subjective JND threshold of each subject using binary search, fitting a distribution model to the collected data, and creating the complementary cumulative distribution function of the distribution. The subjective tests consist of paired comparisons between the source video and compressed versions. However, we show that this approach typically over- or underestimates the SUR. To address this shortcoming, we directly estimate the SUR function by considering the entire population as a collective observer. Our method randomly chooses the subject for each paired comparison and uses a state-of-the-art Bayesian adaptive psychometric method (QUEST+) to select the compressed video in the paired comparison. Our simulations show that this collective method yields more accurate SUR results with fewer comparisons. We also provide a subjective experiment to assess the JND and SUR for compressed video. In the paired comparisons, we apply a flicker test that compares a video that interleaves the source video and its compressed version with the source video. Analysis of the subjective data revealed that the flicker test provides on average higher sensitivity and precision in the assessment of the JND threshold than the usual test that compares compressed versions with the source video. Using crowdsourcing and the proposed approach, we build a JND dataset for 45 source video sequences that are encoded with both advanced video coding (AVC) and versatile video coding (VVC) at all available quantization parameters. Our dataset is available at http://database.mmsp-kn.de/flickervidset-database.html.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690JENADELEH, Mohsen, Raouf HAMZAOUI, Ulf-Dietrich REIPS, Dietmar SAUPE, 2023. Crowdsourced Estimation of Collective Just Noticeable Difference for Compressed Video with Flicker Test and QUEST+
BibTex
@unpublished{Jenadeleh2023-09-14Crowd-67817,
  year={2023},
  doi={10.36227/techrxiv.24119709.v1},
  title={Crowdsourced Estimation of Collective Just Noticeable Difference for Compressed Video with Flicker Test and QUEST+},
  author={Jenadeleh, Mohsen and Hamzaoui, Raouf and Reips, Ulf-Dietrich and Saupe, Dietmar},
  note={This research was also kindly supported by the Zukunftskolleg, the University of Konstanz, with funding from the Excellence Strategy of the German Federal and State Governments.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67817">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dcterms:abstract>The concept of video-wise just noticeable difference (JND) was recently proposed to determine the lowest bitrate at which a source video can be compressed without perceptible quality loss with a given probability.
This bitrate is usually obtained from an estimate of the satisfied used ratio (SUR) at each bitrate, respectively encoding quality parameter. The SUR is the probability that the distortion corresponding to this bitrate is not noticeable. Commonly, the SUR is computed experimentally by estimating the subjective JND threshold of each subject using binary search, fitting a distribution model to the collected data, and creating the complementary cumulative distribution function of the distribution. The subjective tests consist of paired comparisons between the source video and compressed versions. However, we show that this approach typically over- or underestimates the SUR.
To address this shortcoming, we directly estimate the SUR function by considering the entire population as a collective observer. Our method randomly chooses the subject for each paired comparison and uses a state-of-the-art Bayesian adaptive psychometric method (QUEST+) to select the compressed video in the paired comparison.
Our simulations show that this collective method yields more accurate SUR results with fewer comparisons.
We also provide a subjective experiment to assess the JND and SUR for compressed video. In the paired comparisons, we apply a flicker test that compares a video that interleaves the source video and its compressed version with the source video. Analysis of the subjective data revealed that the flicker test provides on average higher sensitivity and precision in the assessment of the JND threshold than the usual test that compares compressed versions with the source video. 
Using crowdsourcing and the proposed approach, we build a JND dataset for 45 source video sequences that are encoded with both  advanced video coding (AVC) and versatile video coding (VVC) at all available quantization parameters.  Our dataset is available at http://database.mmsp-kn.de/flickervidset-database.html.</dcterms:abstract>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Jenadeleh, Mohsen</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-09-19T06:32:20Z</dcterms:available>
    <dc:contributor>Hamzaoui, Raouf</dc:contributor>
    <dc:creator>Reips, Ulf-Dietrich</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Crowdsourced Estimation of Collective Just Noticeable Difference for Compressed Video with Flicker Test and QUEST+</dcterms:title>
    <dc:contributor>Reips, Ulf-Dietrich</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67817"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <dc:creator>Hamzaoui, Raouf</dc:creator>
    <dc:creator>Jenadeleh, Mohsen</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-09-19T06:32:20Z</dc:date>
    <dcterms:issued>2023-09-14</dcterms:issued>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
This research was also kindly supported by the Zukunftskolleg, the University of Konstanz, with funding from the Excellence Strategy of the German Federal and State Governments.
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Link zu Forschungsdaten
Beschreibung der Forschungsdaten
FlickerVidSet VQA Database
Diese Publikation teilen