Simulation Data Analysis Using Fuzzy Graphs
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Analysis of simulation models has gained considerable interest in the past. However, their complexity still remains a considerable drawback in practical applications. A promising concept is to analyze the data from simulation experiments. Existing approaches are either restricted to simple models or are hard to interpret. We present an efficient algorithm that constructs a fuzzy graph model from simulation data and we show that the resulting system approximates also complex model functions with an adjustable precision. In addition the Fuzzy Graph allows the analyst to directly access easy to interpret if-then-rules. These rules help to understand the original simulation model, which is shown with a real world token bus model.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HUBER, Klaus-Peter, Michael R. BERTHOLD, 2006. Simulation Data Analysis Using Fuzzy Graphs. In: LIU, Xiaohui, ed., Paul COHEN, ed., Michael BERTHOLD, ed.. Advances in Intelligent Data Analysis Reasoning about Data. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 347-358. Lecture Notes in Computer Science. 1280. ISBN 978-3-540-63346-4. Available under: doi: 10.1007/BFb0052853BibTex
@inproceedings{Huber2006-05-19Simul-24079, year={2006}, doi={10.1007/BFb0052853}, title={Simulation Data Analysis Using Fuzzy Graphs}, number={1280}, isbn={978-3-540-63346-4}, publisher={Springer Berlin Heidelberg}, address={Berlin, Heidelberg}, series={Lecture Notes in Computer Science}, booktitle={Advances in Intelligent Data Analysis Reasoning about Data}, pages={347--358}, editor={Liu, Xiaohui and Cohen, Paul and Berthold, Michael}, author={Huber, Klaus-Peter and Berthold, Michael R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24079"> <dc:creator>Huber, Klaus-Peter</dc:creator> <dc:creator>Berthold, Michael R.</dc:creator> <dc:contributor>Berthold, Michael R.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2006-05-19</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:bibliographicCitation>Advances in intelligent data analysis : reasoning about data; second international symposium, IDA-97, London, UK, August 4-6, 1997; proceedings / Xiaohui Liu ... (ed.). - Berlin [u.a.] : Springer, 1997. - S. 347-358. - (Lecture notes in computer science ; 1280). - ISBN 3-540-63346-4</dcterms:bibliographicCitation> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-15T07:31:32Z</dc:date> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24079/1/Huber_240797.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">Analysis of simulation models has gained considerable interest in the past. However, their complexity still remains a considerable drawback in practical applications. A promising concept is to analyze the data from simulation experiments. Existing approaches are either restricted to simple models or are hard to interpret. We present an efficient algorithm that constructs a fuzzy graph model from simulation data and we show that the resulting system approximates also complex model functions with an adjustable precision. In addition the Fuzzy Graph allows the analyst to directly access easy to interpret if-then-rules. These rules help to understand the original simulation model, which is shown with a real world token bus model.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-15T07:31:32Z</dcterms:available> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24079/1/Huber_240797.pdf"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Huber, Klaus-Peter</dc:contributor> <dcterms:title>Simulation Data Analysis Using Fuzzy Graphs</dcterms:title> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24079"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> </rdf:Description> </rdf:RDF>