Identifying Patterns and Anomalies within Spatiotemporal Water Sampling Data

Lade...
Vorschaubild
Dateien
Piljek_2-piejpe1o6sbc6.pdf
Piljek_2-piejpe1o6sbc6.pdfGröße: 3.3 MBDownloads: 387
Datum
2018
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
IEEE Conference on Visual Analytics Science and Technology (VAST Challenge 2018 MC2). 2018
Zusammenfassung

This paper presents our solution to the Mini Challenge 2 (MC2) of the VAST Challenge 2018. We will analyze the provided data set and introduce our visualization tool, which was implemented and tailored to the tasks given by MC2. The tool combines the power of stream graphs, innovative glyph visualizations, box plots, sparklines, heat maps and cross-filter strategies. It allows identifying patterns and anomalies within the provided data set.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
IEEE Conference on Visual Analytics Science and Technology (VAST Challenge 2018 MC2), 21. Okt. 2018 - 26. Okt. 2018, 2018
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690PILJEK, Isabel, Giuliana DEHN, Jannik FRAUENDORF, Ziad SALEM, Yerzhan NIYAZBAYEV, Juri F. BUCHMÜLLER, Eren CAKMAK, Wolfgang JENTNER, Florian STOFFEL, Daniel A. KEIM, 2018. Identifying Patterns and Anomalies within Spatiotemporal Water Sampling Data. IEEE Conference on Visual Analytics Science and Technology (VAST Challenge 2018 MC2). 2018, 21. Okt. 2018 - 26. Okt. 2018. In: IEEE Conference on Visual Analytics Science and Technology (VAST Challenge 2018 MC2). 2018
BibTex
@inproceedings{Piljek2018Ident-45038,
  year={2018},
  title={Identifying Patterns and Anomalies within Spatiotemporal Water Sampling Data},
  url={https://scibib.dbvis.de/publications/view/791},
  booktitle={IEEE Conference on Visual Analytics Science and Technology (VAST Challenge 2018 MC2)},
  author={Piljek, Isabel and Dehn, Giuliana and Frauendorf, Jannik and Salem, Ziad and Niyazbayev, Yerzhan and Buchmüller, Juri F. and Cakmak, Eren and Jentner, Wolfgang and Stoffel, Florian and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45038">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Frauendorf, Jannik</dc:contributor>
    <dc:creator>Cakmak, Eren</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Cakmak, Eren</dc:contributor>
    <dc:contributor>Niyazbayev, Yerzhan</dc:contributor>
    <dc:contributor>Stoffel, Florian</dc:contributor>
    <dc:creator>Buchmüller, Juri F.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-14T12:33:02Z</dcterms:available>
    <dc:contributor>Dehn, Giuliana</dc:contributor>
    <dcterms:abstract xml:lang="eng">This paper presents our solution to the Mini Challenge 2 (MC2) of the VAST Challenge 2018. We will analyze the provided data set and introduce our visualization tool, which was implemented and tailored to the tasks given by MC2. The tool combines the power of stream graphs, innovative glyph visualizations, box plots, sparklines, heat maps and cross-filter strategies. It allows identifying patterns and anomalies within the provided data set.</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Dehn, Giuliana</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45038/1/Piljek_2-piejpe1o6sbc6.pdf"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45038/1/Piljek_2-piejpe1o6sbc6.pdf"/>
    <dc:contributor>Piljek, Isabel</dc:contributor>
    <dc:creator>Frauendorf, Jannik</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:issued>2018</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Jentner, Wolfgang</dc:contributor>
    <dcterms:title>Identifying Patterns and Anomalies within Spatiotemporal Water Sampling Data</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Salem, Ziad</dc:contributor>
    <dc:creator>Niyazbayev, Yerzhan</dc:creator>
    <dc:creator>Stoffel, Florian</dc:creator>
    <dc:creator>Salem, Ziad</dc:creator>
    <dc:creator>Piljek, Isabel</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-14T12:33:02Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45038"/>
    <dc:contributor>Buchmüller, Juri F.</dc:contributor>
    <dc:creator>Jentner, Wolfgang</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
Prüfdatum der URL
2019-02-14
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen