Publikation: Protocol Design Challenges in the Detection of Awareness in Aware Subjects Using EEG Signals
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Recent studies have evidenced serious difficulties in detecting covert awareness with electroencephalography-based techniques both in unresponsive patients and in healthy control subjects. This work reproduces the protocol design in two recent mental imagery studies with a larger group comprising 20 healthy volunteers. The main goal is assessing if modifications in the signal extraction techniques, training-testing/cross-validation routines, and hypotheses evoked in the statistical analysis, can provide solutions to the serious difficulties documented in the literature. The lack of robustness in the results advises for further search of alternative protocols more suitable for machine learning classification and of better performing signal treatment techniques. Specific recommendations are made using the findings in this work.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HENRIQUES, Julie, Damien GABRIEL, Lyudmila GRIGORYEVA, Emmanuel HAFFEN, Thierry MOULIN, Régis AUBRY, Lionel PAZART, Juan-Pablo ORTEGA, 2016. Protocol Design Challenges in the Detection of Awareness in Aware Subjects Using EEG Signals. In: Clinical EEG and Neuroscience. 2016, 47(4), pp. 266-275. ISSN 1550-0594. eISSN 2169-5202. Available under: doi: 10.1177/1550059414560397BibTex
@article{Henriques2016-10Proto-41116, year={2016}, doi={10.1177/1550059414560397}, title={Protocol Design Challenges in the Detection of Awareness in Aware Subjects Using EEG Signals}, number={4}, volume={47}, issn={1550-0594}, journal={Clinical EEG and Neuroscience}, pages={266--275}, author={Henriques, Julie and Gabriel, Damien and Grigoryeva, Lyudmila and Haffen, Emmanuel and Moulin, Thierry and Aubry, Régis and Pazart, Lionel and Ortega, Juan-Pablo} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41116"> <dcterms:title>Protocol Design Challenges in the Detection of Awareness in Aware Subjects Using EEG Signals</dcterms:title> <dc:contributor>Haffen, Emmanuel</dc:contributor> <dc:creator>Gabriel, Damien</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-22T14:32:41Z</dcterms:available> <dc:creator>Moulin, Thierry</dc:creator> <dc:creator>Henriques, Julie</dc:creator> <dc:creator>Ortega, Juan-Pablo</dc:creator> <dc:creator>Aubry, Régis</dc:creator> <dc:contributor>Ortega, Juan-Pablo</dc:contributor> <dc:contributor>Moulin, Thierry</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-22T14:32:41Z</dc:date> <dcterms:abstract xml:lang="eng">Recent studies have evidenced serious difficulties in detecting covert awareness with electroencephalography-based techniques both in unresponsive patients and in healthy control subjects. This work reproduces the protocol design in two recent mental imagery studies with a larger group comprising 20 healthy volunteers. The main goal is assessing if modifications in the signal extraction techniques, training-testing/cross-validation routines, and hypotheses evoked in the statistical analysis, can provide solutions to the serious difficulties documented in the literature. The lack of robustness in the results advises for further search of alternative protocols more suitable for machine learning classification and of better performing signal treatment techniques. Specific recommendations are made using the findings in this work.</dcterms:abstract> <dc:contributor>Henriques, Julie</dc:contributor> <dc:creator>Haffen, Emmanuel</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Grigoryeva, Lyudmila</dc:contributor> <dc:creator>Pazart, Lionel</dc:creator> <dc:contributor>Gabriel, Damien</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Pazart, Lionel</dc:contributor> <dc:contributor>Aubry, Régis</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2016-10</dcterms:issued> <dc:creator>Grigoryeva, Lyudmila</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41116"/> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>