Stability and multiscale analysis of an advective lattice Boltzmann scheme

Lade...
Vorschaubild
Dateien
9w9x77105133v41v.pdf
9w9x77105133v41v.pdfGröße: 2.12 MBDownloads: 535
Datum
2008
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Progress in Computational Fluid Dynamics (PCFD). 2008, 8(1-4), pp. 56-68. Available under: doi: 10.1504/PCFD.2008.018079
Zusammenfassung

In this paper we consider a two-population lattice Boltzmann algorithm to approximate the advection equation. First, the stability of this model algorithm is examined. The analysis is based on the analytic computation of the spectrum pertaining to the evolution matrix. After proving a necessary stability condition, the stability of the evolution matrix is shown, which is related to the CFL-condition. We use the model algorithm to demonstrate that formal stability criteria based on a multiscale expansion may fail to predict instability.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Lattice Boltzmann method, Advection, Eigenvalues, Spectrum, Stability, CFL condition, Convergence, Asymptotic analysis, Multiscale expansion
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690RHEINLÄNDER, Martin Kilian, 2008. Stability and multiscale analysis of an advective lattice Boltzmann scheme. In: Progress in Computational Fluid Dynamics (PCFD). 2008, 8(1-4), pp. 56-68. Available under: doi: 10.1504/PCFD.2008.018079
BibTex
@article{Rheinlander2008Stabi-607,
  year={2008},
  doi={10.1504/PCFD.2008.018079},
  title={Stability and multiscale analysis of an advective lattice Boltzmann scheme},
  number={1-4},
  volume={8},
  journal={Progress in Computational Fluid Dynamics (PCFD)},
  pages={56--68},
  author={Rheinländer, Martin Kilian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/607">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/607/1/9w9x77105133v41v.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">In this paper we consider a two-population lattice Boltzmann algorithm to approximate the advection equation. First, the stability of this model algorithm is examined. The analysis is based on the analytic computation of the spectrum pertaining to the evolution matrix. After proving a necessary stability condition, the stability of the evolution matrix is shown, which is related to the CFL-condition. We use the model algorithm to demonstrate that formal stability criteria based on a multiscale expansion may fail to predict instability.</dcterms:abstract>
    <dcterms:issued>2008</dcterms:issued>
    <dcterms:title>Stability and multiscale analysis of an advective lattice Boltzmann scheme</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:12Z</dc:date>
    <dc:contributor>Rheinländer, Martin Kilian</dc:contributor>
    <dc:creator>Rheinländer, Martin Kilian</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:12Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:bibliographicCitation>First publ. in: Progress in Computational Fluid Dynamics (PCFD) 8 (2008), 1-4, pp. 56 - 68</dcterms:bibliographicCitation>
    <dc:format>application/pdf</dc:format>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/607"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/607/1/9w9x77105133v41v.pdf"/>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen