Inverting Multidimensional Scaling Projections Using Data Point Multilateration

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2024
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Institutionen der Bundesrepublik Deutschland: 03EI1048D
Deutsche Forschungsgemeinschaft (DFG): 251654672
Projekt
Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
EL-ASSADY, Mennatallah, Hrsg., Hans-Jörg SCHULZ, Hrsg.. EuroVis Workshop on Visual Analytics (EuroVA 2024). Eindhoven: Eurographics, 2024. ISBN 978-3-03868-253-0. Verfügbar unter: doi: 10.2312/eurova.20241112
Zusammenfassung

Current inverse projection methods are often complex, hard to predict, and may require extensive parametrization. We present a new technique to compute inverse projections of Multidimensional Scaling (MDS) projections with minimal parametrization. We use mutilateration, a method used for geopositioning, to find data values for unknown 2D points, i.e., locations where no data point is projected. Being based on a geometrical relationship, our technique is more interpretable than comparable machine learning-based approaches and can invert 2-dimensional projections up to |D|−1 dimensional spaces given a minimum of |D| data points. We qualitatively and quantitatively compare our technique with existing inverse projection techniques on synthetic and real-world datasets using mean-squared errors (MSEs) and gradient maps. When MDS captures data distances well, our technique shows performance similar to existing approaches. While our method may show higher MSEs when inverting projected data samples, it produces smoother gradient maps, indicating higher predictability when inverting unseen points.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
EuroVis Workshop on Visual Analytics (EuroVA 2024), 27. Mai 2024, Odense, Denmark
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690BLUMBERG, Daniela, Yu WANG, Alexandru TELEA, Daniel A. KEIM, Frederik L. DENNIG, 2024. Inverting Multidimensional Scaling Projections Using Data Point Multilateration. EuroVis Workshop on Visual Analytics (EuroVA 2024). Odense, Denmark, 27. Mai 2024. In: EL-ASSADY, Mennatallah, Hrsg., Hans-Jörg SCHULZ, Hrsg.. EuroVis Workshop on Visual Analytics (EuroVA 2024). Eindhoven: Eurographics, 2024. ISBN 978-3-03868-253-0. Verfügbar unter: doi: 10.2312/eurova.20241112
BibTex
@inproceedings{Blumberg2024Inver-70143,
  year={2024},
  doi={10.2312/eurova.20241112},
  title={Inverting Multidimensional Scaling Projections Using Data Point Multilateration},
  isbn={978-3-03868-253-0},
  publisher={Eurographics},
  address={Eindhoven},
  booktitle={EuroVis Workshop on Visual Analytics (EuroVA 2024)},
  editor={El-Assady, Mennatallah and Schulz, Hans-Jörg},
  author={Blumberg, Daniela and Wang, Yu and Telea, Alexandru and Keim, Daniel A. and Dennig, Frederik L.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70143">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Dennig, Frederik L.</dc:creator>
    <dc:creator>Blumberg, Daniela</dc:creator>
    <dc:contributor>Wang, Yu</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70143"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-18T06:51:45Z</dc:date>
    <dcterms:title>Inverting Multidimensional Scaling Projections Using Data Point Multilateration</dcterms:title>
    <dcterms:issued>2024</dcterms:issued>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Blumberg, Daniela</dc:contributor>
    <dc:contributor>Telea, Alexandru</dc:contributor>
    <dc:contributor>Dennig, Frederik L.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-18T06:51:45Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Wang, Yu</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:abstract>Current inverse projection methods are often complex, hard to predict, and may require extensive parametrization. We present a new technique to compute inverse projections of Multidimensional Scaling (MDS) projections with minimal parametrization. We use mutilateration, a method used for geopositioning, to find data values for unknown 2D points, i.e., locations where no data point is projected. Being based on a geometrical relationship, our technique is more interpretable than comparable machine learning-based approaches and can invert 2-dimensional projections up to |D|−1 dimensional spaces given a minimum of |D| data points. We qualitatively and quantitatively compare our technique with existing inverse projection techniques on synthetic and real-world datasets using mean-squared errors (MSEs) and gradient maps. When MDS captures data distances well, our technique shows performance similar to existing approaches. While our method may show higher MSEs when inverting projected data samples, it produces smoother gradient maps, indicating higher predictability when inverting unseen points.</dcterms:abstract>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Telea, Alexandru</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen