Inverting Multidimensional Scaling Projections Using Data Point Multilateration
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Deutsche Forschungsgemeinschaft (DFG): 251654672
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Current inverse projection methods are often complex, hard to predict, and may require extensive parametrization. We present a new technique to compute inverse projections of Multidimensional Scaling (MDS) projections with minimal parametrization. We use mutilateration, a method used for geopositioning, to find data values for unknown 2D points, i.e., locations where no data point is projected. Being based on a geometrical relationship, our technique is more interpretable than comparable machine learning-based approaches and can invert 2-dimensional projections up to |D|−1 dimensional spaces given a minimum of |D| data points. We qualitatively and quantitatively compare our technique with existing inverse projection techniques on synthetic and real-world datasets using mean-squared errors (MSEs) and gradient maps. When MDS captures data distances well, our technique shows performance similar to existing approaches. While our method may show higher MSEs when inverting projected data samples, it produces smoother gradient maps, indicating higher predictability when inverting unseen points.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BLUMBERG, Daniela, Yu WANG, Alexandru TELEA, Daniel A. KEIM, Frederik L. DENNIG, 2024. Inverting Multidimensional Scaling Projections Using Data Point Multilateration. EuroVis Workshop on Visual Analytics (EuroVA 2024). Odense, Denmark, 27. Mai 2024. In: EL-ASSADY, Mennatallah, Hrsg., Hans-Jörg SCHULZ, Hrsg.. EuroVis Workshop on Visual Analytics (EuroVA 2024). Eindhoven: Eurographics, 2024. ISBN 978-3-03868-253-0. Verfügbar unter: doi: 10.2312/eurova.20241112BibTex
@inproceedings{Blumberg2024Inver-70143, year={2024}, doi={10.2312/eurova.20241112}, title={Inverting Multidimensional Scaling Projections Using Data Point Multilateration}, isbn={978-3-03868-253-0}, publisher={Eurographics}, address={Eindhoven}, booktitle={EuroVis Workshop on Visual Analytics (EuroVA 2024)}, editor={El-Assady, Mennatallah and Schulz, Hans-Jörg}, author={Blumberg, Daniela and Wang, Yu and Telea, Alexandru and Keim, Daniel A. and Dennig, Frederik L.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70143"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Dennig, Frederik L.</dc:creator> <dc:creator>Blumberg, Daniela</dc:creator> <dc:contributor>Wang, Yu</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70143"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-18T06:51:45Z</dc:date> <dcterms:title>Inverting Multidimensional Scaling Projections Using Data Point Multilateration</dcterms:title> <dcterms:issued>2024</dcterms:issued> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70143/1/Blumberg_2-q0024d5hnxgm5.pdf"/> <dc:contributor>Blumberg, Daniela</dc:contributor> <dc:contributor>Telea, Alexandru</dc:contributor> <dc:contributor>Dennig, Frederik L.</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70143/1/Blumberg_2-q0024d5hnxgm5.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-18T06:51:45Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Wang, Yu</dc:creator> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:abstract>Current inverse projection methods are often complex, hard to predict, and may require extensive parametrization. We present a new technique to compute inverse projections of Multidimensional Scaling (MDS) projections with minimal parametrization. We use mutilateration, a method used for geopositioning, to find data values for unknown 2D points, i.e., locations where no data point is projected. Being based on a geometrical relationship, our technique is more interpretable than comparable machine learning-based approaches and can invert 2-dimensional projections up to |D|−1 dimensional spaces given a minimum of |D| data points. We qualitatively and quantitatively compare our technique with existing inverse projection techniques on synthetic and real-world datasets using mean-squared errors (MSEs) and gradient maps. When MDS captures data distances well, our technique shows performance similar to existing approaches. While our method may show higher MSEs when inverting projected data samples, it produces smoother gradient maps, indicating higher predictability when inverting unseen points.</dcterms:abstract> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Telea, Alexandru</dc:creator> </rdf:Description> </rdf:RDF>