Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The recent advent of microphysiological systems - microfluidic biomimetic devices that aspire to emulate the biology of human tissues, organs and circulation in vitro - is envisaged to enable a global paradigm shift in drug development. An extraordinary US governmental initiative and various dedicated research programs in Europe and Asia have led recently to the first cutting-edge achievements of human single-organ and multi-organ engineering based on microphysiological systems. The expectation is that test systems established on this basis would model various disease stages, and predict toxicity, immunogenicity, ADME profiles and treatment efficacy prior to clinical testing. Consequently, this technology could significantly affect the way drug substances are developed in the future. Furthermore, microphysiological system-based assays may revolutionize our current global programs of prioritization of hazard characterization for any new substances to be used, for example, in agriculture, food, ecosystems or cosmetics, thus, replacing laboratory animal models used currently. Thirty-six experts from academia, industry and regulatory bodies present here the results of an intensive workshop (held in June 2015, Berlin, Germany). They review the status quo of microphysiological systems available today against industry needs, and assess the broad variety of approaches with fit-for-purpose potential in the drug development cycle. Feasible technical solutions to reach the next levels of human biology in vitro are proposed. Furthermore, key organ-on-a-chip case studies, as well as various national and international programs are highlighted. Finally, a roadmap into the future is outlined, to allow for more predictive and regulatory-accepted substance testing on a global scale.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MARX, Uwe, Tommy B. ANDERSSON, Anthony BAHINSKI, Mario BEILMANN, Sonja BEKEN, Flemming R. CASSEE, Mardas DANESHIAN, Thomas HARTUNG, Marcel LEIST, Adrian ROTH, 2016. Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. In: ALTEX. 2016, 33(3), pp. 272-321. ISSN 0946-7785. eISSN 1868-8551. Available under: doi: 10.14573/altex.1603161BibTex
@article{Marx2016Biolo-36592, year={2016}, doi={10.14573/altex.1603161}, title={Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing}, number={3}, volume={33}, issn={0946-7785}, journal={ALTEX}, pages={272--321}, author={Marx, Uwe and Andersson, Tommy B. and Bahinski, Anthony and Beilmann, Mario and Beken, Sonja and Cassee, Flemming R. and Daneshian, Mardas and Hartung, Thomas and Leist, Marcel and Roth, Adrian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36592"> <dc:contributor>Hartung, Thomas</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Leist, Marcel</dc:creator> <dc:contributor>Marx, Uwe</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Roth, Adrian</dc:contributor> <dc:creator>Beilmann, Mario</dc:creator> <dc:contributor>Beilmann, Mario</dc:contributor> <dc:creator>Roth, Adrian</dc:creator> <dc:contributor>Bahinski, Anthony</dc:contributor> <dcterms:abstract xml:lang="eng">The recent advent of microphysiological systems - microfluidic biomimetic devices that aspire to emulate the biology of human tissues, organs and circulation in vitro - is envisaged to enable a global paradigm shift in drug development. An extraordinary US governmental initiative and various dedicated research programs in Europe and Asia have led recently to the first cutting-edge achievements of human single-organ and multi-organ engineering based on microphysiological systems. The expectation is that test systems established on this basis would model various disease stages, and predict toxicity, immunogenicity, ADME profiles and treatment efficacy prior to clinical testing. Consequently, this technology could significantly affect the way drug substances are developed in the future. Furthermore, microphysiological system-based assays may revolutionize our current global programs of prioritization of hazard characterization for any new substances to be used, for example, in agriculture, food, ecosystems or cosmetics, thus, replacing laboratory animal models used currently. Thirty-six experts from academia, industry and regulatory bodies present here the results of an intensive workshop (held in June 2015, Berlin, Germany). They review the status quo of microphysiological systems available today against industry needs, and assess the broad variety of approaches with fit-for-purpose potential in the drug development cycle. Feasible technical solutions to reach the next levels of human biology in vitro are proposed. Furthermore, key organ-on-a-chip case studies, as well as various national and international programs are highlighted. Finally, a roadmap into the future is outlined, to allow for more predictive and regulatory-accepted substance testing on a global scale.</dcterms:abstract> <dc:contributor>Leist, Marcel</dc:contributor> <dc:creator>Beken, Sonja</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Andersson, Tommy B.</dc:contributor> <dc:creator>Andersson, Tommy B.</dc:creator> <dc:creator>Bahinski, Anthony</dc:creator> <dc:contributor>Beken, Sonja</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Hartung, Thomas</dc:creator> <dc:contributor>Cassee, Flemming R.</dc:contributor> <dc:creator>Marx, Uwe</dc:creator> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-12T06:50:04Z</dcterms:available> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/36592/3/Marx_0-347373.pdf"/> <dc:contributor>Daneshian, Mardas</dc:contributor> <dcterms:issued>2016</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/36592"/> <dc:rights>Attribution 4.0 International</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-12T06:50:04Z</dc:date> <dc:creator>Daneshian, Mardas</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/36592/3/Marx_0-347373.pdf"/> <dc:creator>Cassee, Flemming R.</dc:creator> <dcterms:title>Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing</dcterms:title> </rdf:Description> </rdf:RDF>