Publikation:

Braided bi-Galois theory II : The cocommutative case

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2010

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Algebra. 2010, 324(11), pp. 3199-3218. ISSN 0021-8693. Available under: doi: 10.1016/j.jalgebra.2010.07.029

Zusammenfassung

We study groups of bi-Galois objects over a Hopf algebra H in a braided monoidal category Β. We assume H to be cocommutative in a certain sense; this does not mean that H is a cocommutative coalgebra with respect to the braiding given in Β, but it is cocommutative with respect to a different braiding subject to specific axioms. The type of cocommutative Hopf algebras under consideration (investigated in previous papers) occurs naturally, for example in Majid's transmutation construction. We show that for cocommutative H the suitably defined cocommutative bi-Galois objects form a subgroup in the group of H-H-bi-Galois objects. We also show that all cocycles on H are lazy, and that second (lazy) cohomology describes the subgroup of cleft bi-Galois extensions in the group of cocommutative ones.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Hopf algebras, Braided categories, Hopf–Galois theory

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHAUENBURG, Peter, 2010. Braided bi-Galois theory II : The cocommutative case. In: Journal of Algebra. 2010, 324(11), pp. 3199-3218. ISSN 0021-8693. Available under: doi: 10.1016/j.jalgebra.2010.07.029
BibTex
@article{Schauenburg2010Braid-12759,
  year={2010},
  doi={10.1016/j.jalgebra.2010.07.029},
  title={Braided bi-Galois theory II : The cocommutative case},
  number={11},
  volume={324},
  issn={0021-8693},
  journal={Journal of Algebra},
  pages={3199--3218},
  author={Schauenburg, Peter}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12759">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Schauenburg, Peter</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-12T08:54:58Z</dc:date>
    <dcterms:abstract xml:lang="eng">We study groups of bi-Galois objects over a Hopf algebra H in a braided monoidal category Β. We assume H to be cocommutative in a certain sense; this does not mean that H is a cocommutative coalgebra with respect to the braiding given in Β, but it is cocommutative with respect to a different braiding subject to specific axioms. The type of cocommutative Hopf algebras under consideration (investigated in previous papers) occurs naturally, for example in Majid's transmutation construction. We show that for cocommutative H the suitably defined cocommutative bi-Galois objects form a subgroup in the group of H-H-bi-Galois objects. We also show that all cocycles on H are lazy, and that second (lazy) cohomology describes the subgroup of cleft bi-Galois extensions in the group of cocommutative ones.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Braided bi-Galois theory II : The cocommutative case</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-12T08:54:58Z</dcterms:available>
    <dcterms:bibliographicCitation>First publ. in: Journal of Algebra 324 (2010), 11, pp. 3199-3218</dcterms:bibliographicCitation>
    <dcterms:issued>2010</dcterms:issued>
    <dc:contributor>Schauenburg, Peter</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12759"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen