Braided bi-Galois theory II : The cocommutative case
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We study groups of bi-Galois objects over a Hopf algebra H in a braided monoidal category Β. We assume H to be cocommutative in a certain sense; this does not mean that H is a cocommutative coalgebra with respect to the braiding given in Β, but it is cocommutative with respect to a different braiding subject to specific axioms. The type of cocommutative Hopf algebras under consideration (investigated in previous papers) occurs naturally, for example in Majid's transmutation construction. We show that for cocommutative H the suitably defined cocommutative bi-Galois objects form a subgroup in the group of H-H-bi-Galois objects. We also show that all cocycles on H are lazy, and that second (lazy) cohomology describes the subgroup of cleft bi-Galois extensions in the group of cocommutative ones.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHAUENBURG, Peter, 2010. Braided bi-Galois theory II : The cocommutative case. In: Journal of Algebra. 2010, 324(11), pp. 3199-3218. ISSN 0021-8693. Available under: doi: 10.1016/j.jalgebra.2010.07.029BibTex
@article{Schauenburg2010Braid-12759, year={2010}, doi={10.1016/j.jalgebra.2010.07.029}, title={Braided bi-Galois theory II : The cocommutative case}, number={11}, volume={324}, issn={0021-8693}, journal={Journal of Algebra}, pages={3199--3218}, author={Schauenburg, Peter} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12759"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Schauenburg, Peter</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-12T08:54:58Z</dc:date> <dcterms:abstract xml:lang="eng">We study groups of bi-Galois objects over a Hopf algebra H in a braided monoidal category Β. We assume H to be cocommutative in a certain sense; this does not mean that H is a cocommutative coalgebra with respect to the braiding given in Β, but it is cocommutative with respect to a different braiding subject to specific axioms. The type of cocommutative Hopf algebras under consideration (investigated in previous papers) occurs naturally, for example in Majid's transmutation construction. We show that for cocommutative H the suitably defined cocommutative bi-Galois objects form a subgroup in the group of H-H-bi-Galois objects. We also show that all cocycles on H are lazy, and that second (lazy) cohomology describes the subgroup of cleft bi-Galois extensions in the group of cocommutative ones.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Braided bi-Galois theory II : The cocommutative case</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-12T08:54:58Z</dcterms:available> <dcterms:bibliographicCitation>First publ. in: Journal of Algebra 324 (2010), 11, pp. 3199-3218</dcterms:bibliographicCitation> <dcterms:issued>2010</dcterms:issued> <dc:contributor>Schauenburg, Peter</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12759"/> </rdf:Description> </rdf:RDF>