HTPheno : an image analysis pipeline for high-throughput plant phenotyping

Lade...
Vorschaubild
Dateien
Hartmann_0-396630.pdf
Hartmann_0-396630.pdfGröße: 2.1 MBDownloads: 331
Datum
2011
Autor:innen
Hartmann, Anja
Czauderna, Tobias
Hoffmann, Roberto
Stein, Nils
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
BMC Bioinformatics. 2011, 12(1), 148. ISSN 1471-2105. eISSN 1471-2105. Available under: doi: 10.1186/1471-2105-12-148
Zusammenfassung

Background

In the last few years high-throughput analysis methods have become state-of-the-art in the life sciences. One of the latest developments is automated greenhouse systems for high-throughput plant phenotyping. Such systems allow the non-destructive screening of plants over a period of time by means of image acquisition techniques. During such screening different images of each plant are recorded and must be analysed by applying sophisticated image analysis algorithms.

Results

This paper presents an image analysis pipeline (HTPheno) for high-throughput plant phenotyping. HTPheno is implemented as a plugin for ImageJ, an open source image processing software. It provides the possibility to analyse colour images of plants which are taken in two different views (top view and side view) during a screening. Within the analysis different phenotypical parameters for each plant such as height, width and projected shoot area of the plants are calculated for the duration of the screening. HTPheno is applied to analyse two barley cultivars.

Conclusions

HTPheno, an open source image analysis pipeline, supplies a flexible and adaptable ImageJ plugin which can be used for automated image analysis in high-throughput plant phenotyping and therefore to derive new biological insights, such as determination of fitness.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690HARTMANN, Anja, Tobias CZAUDERNA, Roberto HOFFMANN, Nils STEIN, Falk SCHREIBER, 2011. HTPheno : an image analysis pipeline for high-throughput plant phenotyping. In: BMC Bioinformatics. 2011, 12(1), 148. ISSN 1471-2105. eISSN 1471-2105. Available under: doi: 10.1186/1471-2105-12-148
BibTex
@article{Hartmann2011HTPhe-38591,
  year={2011},
  doi={10.1186/1471-2105-12-148},
  title={HTPheno : an image analysis pipeline for high-throughput plant phenotyping},
  number={1},
  volume={12},
  issn={1471-2105},
  journal={BMC Bioinformatics},
  author={Hartmann, Anja and Czauderna, Tobias and Hoffmann, Roberto and Stein, Nils and Schreiber, Falk},
  note={Article Number: 148}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38591">
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38591/3/Hartmann_0-396630.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Czauderna, Tobias</dc:contributor>
    <dc:contributor>Schreiber, Falk</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>HTPheno : an image analysis pipeline for high-throughput plant phenotyping</dcterms:title>
    <dc:contributor>Hoffmann, Roberto</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38591/3/Hartmann_0-396630.pdf"/>
    <dc:contributor>Stein, Nils</dc:contributor>
    <dcterms:abstract xml:lang="eng">Background&lt;br /&gt;&lt;br /&gt;In the last few years high-throughput analysis methods have become state-of-the-art in the life sciences. One of the latest developments is automated greenhouse systems for high-throughput plant phenotyping. Such systems allow the non-destructive screening of plants over a period of time by means of image acquisition techniques. During such screening different images of each plant are recorded and must be analysed by applying sophisticated image analysis algorithms.&lt;br /&gt;&lt;br /&gt;Results&lt;br /&gt;&lt;br /&gt;This paper presents an image analysis pipeline (HTPheno) for high-throughput plant phenotyping. HTPheno is implemented as a plugin for ImageJ, an open source image processing software. It provides the possibility to analyse colour images of plants which are taken in two different views (top view and side view) during a screening. Within the analysis different phenotypical parameters for each plant such as height, width and projected shoot area of the plants are calculated for the duration of the screening. HTPheno is applied to analyse two barley cultivars.&lt;br /&gt;&lt;br /&gt;Conclusions&lt;br /&gt;&lt;br /&gt;HTPheno, an open source image analysis pipeline, supplies a flexible and adaptable ImageJ plugin which can be used for automated image analysis in high-throughput plant phenotyping and therefore to derive new biological insights, such as determination of fitness.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Czauderna, Tobias</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-04-25T08:10:00Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38591"/>
    <dcterms:issued>2011</dcterms:issued>
    <dc:creator>Stein, Nils</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Hartmann, Anja</dc:contributor>
    <dc:creator>Hartmann, Anja</dc:creator>
    <dc:creator>Schreiber, Falk</dc:creator>
    <dc:creator>Hoffmann, Roberto</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-04-25T08:10:00Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen