Combining automated analysis and visualization techniques for effective exploration of high-dimensional data
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Visual exploration of multivariate data typically requires projection onto lower dimensional representations. The number of possible representations grows rapidly with the number of dimensions, and manual exploration quickly becomes ineffective or even unfeasible. This paper proposes automatic analysis methods to extract potentially relevant visual structures from a set of candidate visualizations. Based on features, the visualizations are ranked in accordance with a specified user task. The user is provided with a manageable number of potentially useful candidate visualizations, which can be used as a starting point for interactive data analysis. This can effectively ease the task of finding truly useful visualizations and potentially speed up the data exploration task. In this paper, we present ranking measures for class-based as well as non class-based Scatterplots and Parallel Coordinates visualizations. The proposed analysis methods are evaluated on different datasets.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
TATU, Andrada, Georgia ALBUQUERQUE, Martin EISEMANN, Jörn SCHNEIDEWIND, Holger THEISEL, Marcus MAGNOR, Daniel A. KEIM, 2009. Combining automated analysis and visualization techniques for effective exploration of high-dimensional data. 2009 IEEE Symposium on Visual Analytics Science and Technology. Atlantic City, NJ, USA, 12. Okt. 2009 - 13. Okt. 2009. In: 2009 IEEE Symposium on Visual Analytics Science and Technology. IEEE, 2009, pp. 59-66. ISBN 978-1-4244-5283-5. Available under: doi: 10.1109/VAST.2009.5332628BibTex
@inproceedings{Tatu2009-10Combi-5750, year={2009}, doi={10.1109/VAST.2009.5332628}, title={Combining automated analysis and visualization techniques for effective exploration of high-dimensional data}, isbn={978-1-4244-5283-5}, publisher={IEEE}, booktitle={2009 IEEE Symposium on Visual Analytics Science and Technology}, pages={59--66}, author={Tatu, Andrada and Albuquerque, Georgia and Eisemann, Martin and Schneidewind, Jörn and Theisel, Holger and Magnor, Marcus and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5750"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5750/1/Tatu_2009_CombiningAutomated.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Tatu, Andrada</dc:creator> <dc:contributor>Eisemann, Martin</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:48Z</dc:date> <dc:contributor>Magnor, Marcus</dc:contributor> <dc:contributor>Albuquerque, Georgia</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Albuquerque, Georgia</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:48Z</dcterms:available> <dc:contributor>Theisel, Holger</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dc:format>application/pdf</dc:format> <dcterms:bibliographicCitation>First publ. in: IEEE Symposium on Visual Analytics Science and Technology (VAST) : Atlantic City, New Jersey, USA, October 12-13, 2009 : proceedings / John Stasko. - [Piscataway, N.J.] : IEEE Xplore, 2009. - pp. 59-66. - ISBN 978-1-4244-5283-5</dcterms:bibliographicCitation> <dc:creator>Schneidewind, Jörn</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Magnor, Marcus</dc:creator> <dc:creator>Theisel, Holger</dc:creator> <dc:contributor>Tatu, Andrada</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:creator>Eisemann, Martin</dc:creator> <dcterms:abstract xml:lang="eng">Visual exploration of multivariate data typically requires projection onto lower dimensional representations. The number of possible representations grows rapidly with the number of dimensions, and manual exploration quickly becomes ineffective or even unfeasible. This paper proposes automatic analysis methods to extract potentially relevant visual structures from a set of candidate visualizations. Based on features, the visualizations are ranked in accordance with a specified user task. The user is provided with a manageable number of potentially useful candidate visualizations, which can be used as a starting point for interactive data analysis. This can effectively ease the task of finding truly useful visualizations and potentially speed up the data exploration task. In this paper, we present ranking measures for class-based as well as non class-based Scatterplots and Parallel Coordinates visualizations. The proposed analysis methods are evaluated on different datasets.</dcterms:abstract> <dcterms:title>Combining automated analysis and visualization techniques for effective exploration of high-dimensional data</dcterms:title> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5750"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Schneidewind, Jörn</dc:contributor> <dcterms:issued>2009-10</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5750/1/Tatu_2009_CombiningAutomated.pdf"/> </rdf:Description> </rdf:RDF>