Publikation:

Combining automated analysis and visualization techniques for effective exploration of high-dimensional data

Lade...
Vorschaubild

Dateien

Tatu_2009_CombiningAutomated.pdf
Tatu_2009_CombiningAutomated.pdfGröße: 8.74 MBDownloads: 1064

Datum

2009

Autor:innen

Albuquerque, Georgia
Eisemann, Martin
Schneidewind, Jörn
Theisel, Holger
Magnor, Marcus

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2009 IEEE Symposium on Visual Analytics Science and Technology. IEEE, 2009, pp. 59-66. ISBN 978-1-4244-5283-5. Available under: doi: 10.1109/VAST.2009.5332628

Zusammenfassung

Visual exploration of multivariate data typically requires projection onto lower dimensional representations. The number of possible representations grows rapidly with the number of dimensions, and manual exploration quickly becomes ineffective or even unfeasible. This paper proposes automatic analysis methods to extract potentially relevant visual structures from a set of candidate visualizations. Based on features, the visualizations are ranked in accordance with a specified user task. The user is provided with a manageable number of potentially useful candidate visualizations, which can be used as a starting point for interactive data analysis. This can effectively ease the task of finding truly useful visualizations and potentially speed up the data exploration task. In this paper, we present ranking measures for class-based as well as non class-based Scatterplots and Parallel Coordinates visualizations. The proposed analysis methods are evaluated on different datasets.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

2009 IEEE Symposium on Visual Analytics Science and Technology, 12. Okt. 2009 - 13. Okt. 2009, Atlantic City, NJ, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690TATU, Andrada, Georgia ALBUQUERQUE, Martin EISEMANN, Jörn SCHNEIDEWIND, Holger THEISEL, Marcus MAGNOR, Daniel A. KEIM, 2009. Combining automated analysis and visualization techniques for effective exploration of high-dimensional data. 2009 IEEE Symposium on Visual Analytics Science and Technology. Atlantic City, NJ, USA, 12. Okt. 2009 - 13. Okt. 2009. In: 2009 IEEE Symposium on Visual Analytics Science and Technology. IEEE, 2009, pp. 59-66. ISBN 978-1-4244-5283-5. Available under: doi: 10.1109/VAST.2009.5332628
BibTex
@inproceedings{Tatu2009-10Combi-5750,
  year={2009},
  doi={10.1109/VAST.2009.5332628},
  title={Combining automated analysis and visualization techniques for effective exploration of high-dimensional data},
  isbn={978-1-4244-5283-5},
  publisher={IEEE},
  booktitle={2009 IEEE Symposium on Visual Analytics Science and Technology},
  pages={59--66},
  author={Tatu, Andrada and Albuquerque, Georgia and Eisemann, Martin and Schneidewind, Jörn and Theisel, Holger and Magnor, Marcus and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5750">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5750/1/Tatu_2009_CombiningAutomated.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Tatu, Andrada</dc:creator>
    <dc:contributor>Eisemann, Martin</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:48Z</dc:date>
    <dc:contributor>Magnor, Marcus</dc:contributor>
    <dc:contributor>Albuquerque, Georgia</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Albuquerque, Georgia</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:48Z</dcterms:available>
    <dc:contributor>Theisel, Holger</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:format>application/pdf</dc:format>
    <dcterms:bibliographicCitation>First publ. in: IEEE Symposium on Visual Analytics Science and Technology (VAST) : Atlantic City, New Jersey, USA, October 12-13, 2009 : proceedings / John Stasko. - [Piscataway, N.J.] : IEEE Xplore, 2009. - pp. 59-66. - ISBN 978-1-4244-5283-5</dcterms:bibliographicCitation>
    <dc:creator>Schneidewind, Jörn</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Magnor, Marcus</dc:creator>
    <dc:creator>Theisel, Holger</dc:creator>
    <dc:contributor>Tatu, Andrada</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Eisemann, Martin</dc:creator>
    <dcterms:abstract xml:lang="eng">Visual exploration of multivariate data typically requires projection onto lower dimensional representations. The number of possible representations grows rapidly with the number of dimensions, and manual exploration quickly becomes ineffective or even unfeasible. This paper proposes automatic analysis methods to extract potentially relevant visual structures from a set of candidate visualizations. Based on features, the visualizations are ranked in accordance with a specified user task. The user is provided with a manageable number of potentially useful candidate visualizations, which can be used as a starting point for interactive data analysis. This can effectively ease the task of finding truly useful visualizations and potentially speed up the data exploration task. In this paper, we present ranking measures for class-based as well as non class-based Scatterplots and Parallel Coordinates visualizations. The proposed analysis methods are evaluated on different datasets.</dcterms:abstract>
    <dcterms:title>Combining automated analysis and visualization techniques for effective exploration of high-dimensional data</dcterms:title>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5750"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Schneidewind, Jörn</dc:contributor>
    <dcterms:issued>2009-10</dcterms:issued>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5750/1/Tatu_2009_CombiningAutomated.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen