Publikation:

Shape-Based Quality Metrics for Large Graph Visualization

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Autor:innen

Eades, Peter
Hong, Seok-Hee
Nguyen, An

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Graph Algorithms and Applications : JGAA. 2017, 21(1), pp. 29-53. eISSN 1526-1719. Available under: doi: 10.7155/jgaa.00405

Zusammenfassung

The scalability of graph layout algorithms has gradually improved for many years. However, only recently a discussion has started to investigate the usefulness of established quality metrics, such as the number of edge crossings, in the context of increasingly larger graphs stemming from a variety of application areas such as social network analysis or biology. Initial evidence suggests that the traditional metrics are not well suited to capture the quality of corresponding graph layouts. We propose a new family of quality metrics for graph drawing; in particular, we concentrate on larger graphs. We illustrate these metrics with examples and apply the metrics to data from previous experiments, leading to the suggestion that the new metrics are effective.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690EADES, Peter, Seok-Hee HONG, An NGUYEN, Karsten KLEIN, 2017. Shape-Based Quality Metrics for Large Graph Visualization. In: Journal of Graph Algorithms and Applications : JGAA. 2017, 21(1), pp. 29-53. eISSN 1526-1719. Available under: doi: 10.7155/jgaa.00405
BibTex
@article{Eades2017Shape-44581,
  year={2017},
  doi={10.7155/jgaa.00405},
  title={Shape-Based Quality Metrics for Large Graph Visualization},
  number={1},
  volume={21},
  journal={Journal of Graph Algorithms and Applications : JGAA},
  pages={29--53},
  author={Eades, Peter and Hong, Seok-Hee and Nguyen, An and Klein, Karsten}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44581">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-16T08:49:00Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Nguyen, An</dc:contributor>
    <dc:contributor>Klein, Karsten</dc:contributor>
    <dc:creator>Klein, Karsten</dc:creator>
    <dcterms:title>Shape-Based Quality Metrics for Large Graph Visualization</dcterms:title>
    <dcterms:abstract xml:lang="eng">The scalability of graph layout algorithms has gradually improved for many years. However, only recently a discussion has started to investigate the usefulness of established quality metrics, such as the number of edge crossings, in the context of increasingly larger graphs stemming from a variety of application areas such as social network analysis or biology. Initial evidence suggests that the traditional metrics are not well suited to capture the quality of corresponding graph layouts. We propose a new family of quality metrics for graph drawing; in particular, we concentrate on larger graphs. We illustrate these metrics with examples and apply the metrics to data from previous experiments, leading to the suggestion that the new metrics are effective.</dcterms:abstract>
    <dc:contributor>Eades, Peter</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Hong, Seok-Hee</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dc:creator>Nguyen, An</dc:creator>
    <dcterms:issued>2017</dcterms:issued>
    <dc:creator>Eades, Peter</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44581"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-16T08:49:00Z</dc:date>
    <dc:contributor>Hong, Seok-Hee</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen