Shape-Based Quality Metrics for Large Graph Visualization

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2017
Autor:innen
Eades, Peter
Hong, Seok-Hee
Nguyen, An
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Graph Algorithms and Applications : JGAA. 2017, 21(1), pp. 29-53. eISSN 1526-1719. Available under: doi: 10.7155/jgaa.00405
Zusammenfassung

The scalability of graph layout algorithms has gradually improved for many years. However, only recently a discussion has started to investigate the usefulness of established quality metrics, such as the number of edge crossings, in the context of increasingly larger graphs stemming from a variety of application areas such as social network analysis or biology. Initial evidence suggests that the traditional metrics are not well suited to capture the quality of corresponding graph layouts. We propose a new family of quality metrics for graph drawing; in particular, we concentrate on larger graphs. We illustrate these metrics with examples and apply the metrics to data from previous experiments, leading to the suggestion that the new metrics are effective.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690EADES, Peter, Seok-Hee HONG, An NGUYEN, Karsten KLEIN, 2017. Shape-Based Quality Metrics for Large Graph Visualization. In: Journal of Graph Algorithms and Applications : JGAA. 2017, 21(1), pp. 29-53. eISSN 1526-1719. Available under: doi: 10.7155/jgaa.00405
BibTex
@article{Eades2017Shape-44581,
  year={2017},
  doi={10.7155/jgaa.00405},
  title={Shape-Based Quality Metrics for Large Graph Visualization},
  number={1},
  volume={21},
  journal={Journal of Graph Algorithms and Applications : JGAA},
  pages={29--53},
  author={Eades, Peter and Hong, Seok-Hee and Nguyen, An and Klein, Karsten}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44581">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-16T08:49:00Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Nguyen, An</dc:contributor>
    <dc:contributor>Klein, Karsten</dc:contributor>
    <dc:creator>Klein, Karsten</dc:creator>
    <dcterms:title>Shape-Based Quality Metrics for Large Graph Visualization</dcterms:title>
    <dcterms:abstract xml:lang="eng">The scalability of graph layout algorithms has gradually improved for many years. However, only recently a discussion has started to investigate the usefulness of established quality metrics, such as the number of edge crossings, in the context of increasingly larger graphs stemming from a variety of application areas such as social network analysis or biology. Initial evidence suggests that the traditional metrics are not well suited to capture the quality of corresponding graph layouts. We propose a new family of quality metrics for graph drawing; in particular, we concentrate on larger graphs. We illustrate these metrics with examples and apply the metrics to data from previous experiments, leading to the suggestion that the new metrics are effective.</dcterms:abstract>
    <dc:contributor>Eades, Peter</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Hong, Seok-Hee</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dc:creator>Nguyen, An</dc:creator>
    <dcterms:issued>2017</dcterms:issued>
    <dc:creator>Eades, Peter</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44581"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-16T08:49:00Z</dc:date>
    <dc:contributor>Hong, Seok-Hee</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen