Publikation: Hyperbolic polynomials, interlacers, and sums of squares
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Hyperbolic polynomials are real polynomials whose real hypersurfaces are maximally nested ovaloids, the innermost of which is convex. These polynomials appear in many areas of mathematics, including optimization, combinatorics and differential equations. Here we investigate the special connection between a hyperbolic polynomial and the set of polynomials that interlace it. This set of interlacers is a convex cone, which we write as a linear slice of the cone of nonnegative polynomials. In particular, this allows us to realize any hyperbolicity cone as a slice of the cone of nonnegative polynomials. Using a sums of squares relaxation, we then approximate a hyperbolicity cone by the projection of a spectrahedron. A multiaffine example coming from the Vámos matroid shows that this relaxation is not always exact. Using this theory, we characterize the real stable multiaffine polynomials that have a definite determinantal representation and construct one when it exists.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KUMMER, Mario, Daniel PLAUMANN, Cynthia VINZANT, 2015. Hyperbolic polynomials, interlacers, and sums of squares. In: Mathematical Programming. 2015, 153(1), pp. 223-245. ISSN 0025-5610. eISSN 1436-4646. Available under: doi: 10.1007/s10107-013-0736-yBibTex
@article{Kummer2015Hyper-32757, year={2015}, doi={10.1007/s10107-013-0736-y}, title={Hyperbolic polynomials, interlacers, and sums of squares}, number={1}, volume={153}, issn={0025-5610}, journal={Mathematical Programming}, pages={223--245}, author={Kummer, Mario and Plaumann, Daniel and Vinzant, Cynthia} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32757"> <dcterms:abstract xml:lang="eng">Hyperbolic polynomials are real polynomials whose real hypersurfaces are maximally nested ovaloids, the innermost of which is convex. These polynomials appear in many areas of mathematics, including optimization, combinatorics and differential equations. Here we investigate the special connection between a hyperbolic polynomial and the set of polynomials that interlace it. This set of interlacers is a convex cone, which we write as a linear slice of the cone of nonnegative polynomials. In particular, this allows us to realize any hyperbolicity cone as a slice of the cone of nonnegative polynomials. Using a sums of squares relaxation, we then approximate a hyperbolicity cone by the projection of a spectrahedron. A multiaffine example coming from the Vámos matroid shows that this relaxation is not always exact. Using this theory, we characterize the real stable multiaffine polynomials that have a definite determinantal representation and construct one when it exists.</dcterms:abstract> <dc:creator>Vinzant, Cynthia</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-01-28T14:46:29Z</dcterms:available> <dc:creator>Kummer, Mario</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2015</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Kummer, Mario</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Plaumann, Daniel</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-01-28T14:46:29Z</dc:date> <dcterms:title>Hyperbolic polynomials, interlacers, and sums of squares</dcterms:title> <dc:contributor>Vinzant, Cynthia</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32757"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:creator>Plaumann, Daniel</dc:creator> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>