Publikation:

Hyperbolic polynomials, interlacers, and sums of squares

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2015

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Mathematical Programming. 2015, 153(1), pp. 223-245. ISSN 0025-5610. eISSN 1436-4646. Available under: doi: 10.1007/s10107-013-0736-y

Zusammenfassung

Hyperbolic polynomials are real polynomials whose real hypersurfaces are maximally nested ovaloids, the innermost of which is convex. These polynomials appear in many areas of mathematics, including optimization, combinatorics and differential equations. Here we investigate the special connection between a hyperbolic polynomial and the set of polynomials that interlace it. This set of interlacers is a convex cone, which we write as a linear slice of the cone of nonnegative polynomials. In particular, this allows us to realize any hyperbolicity cone as a slice of the cone of nonnegative polynomials. Using a sums of squares relaxation, we then approximate a hyperbolicity cone by the projection of a spectrahedron. A multiaffine example coming from the Vámos matroid shows that this relaxation is not always exact. Using this theory, we characterize the real stable multiaffine polynomials that have a definite determinantal representation and construct one when it exists.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Primary 14P99, Secondary 05E99, 11E25, 52A20, 90C22

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KUMMER, Mario, Daniel PLAUMANN, Cynthia VINZANT, 2015. Hyperbolic polynomials, interlacers, and sums of squares. In: Mathematical Programming. 2015, 153(1), pp. 223-245. ISSN 0025-5610. eISSN 1436-4646. Available under: doi: 10.1007/s10107-013-0736-y
BibTex
@article{Kummer2015Hyper-32757,
  year={2015},
  doi={10.1007/s10107-013-0736-y},
  title={Hyperbolic polynomials, interlacers, and sums of squares},
  number={1},
  volume={153},
  issn={0025-5610},
  journal={Mathematical Programming},
  pages={223--245},
  author={Kummer, Mario and Plaumann, Daniel and Vinzant, Cynthia}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32757">
    <dcterms:abstract xml:lang="eng">Hyperbolic polynomials are real polynomials whose real hypersurfaces are maximally nested ovaloids, the innermost of which is convex. These polynomials appear in many areas of mathematics, including optimization, combinatorics and differential equations. Here we investigate the special connection between a hyperbolic polynomial and the set of polynomials that interlace it. This set of interlacers is a convex cone, which we write as a linear slice of the cone of nonnegative polynomials. In particular, this allows us to realize any hyperbolicity cone as a slice of the cone of nonnegative polynomials. Using a sums of squares relaxation, we then approximate a hyperbolicity cone by the projection of a spectrahedron. A multiaffine example coming from the Vámos matroid shows that this relaxation is not always exact. Using this theory, we characterize the real stable multiaffine polynomials that have a definite determinantal representation and construct one when it exists.</dcterms:abstract>
    <dc:creator>Vinzant, Cynthia</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-01-28T14:46:29Z</dcterms:available>
    <dc:creator>Kummer, Mario</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2015</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Kummer, Mario</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Plaumann, Daniel</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-01-28T14:46:29Z</dc:date>
    <dcterms:title>Hyperbolic polynomials, interlacers, and sums of squares</dcterms:title>
    <dc:contributor>Vinzant, Cynthia</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32757"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:creator>Plaumann, Daniel</dc:creator>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen