Time-Resolved Spectroscopy of Bare and Reacted Gold and Silver Clusters : Materials for New Photochemistry?
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Led by the vision of searching for suitable candidates for future applications in catalysis and energy conversion, systematic studies on the dynamical properties of several size-selected clusters have been performed. The following questions were addressed:
- What are the basic relaxation mechanisms of clusters consisting of s/p-metals? Do bare silver clusters show similar properties to the previously studied gold or aluminum clusters?
- Do metal clusters exhibit different dynamical behavior from bulk metals with respect to photon induced desorption?
- Can species with long-lived excited states be identified?
In order to address these issues, Agn- (n up to 21), AgnO2- with n = 2, 3, 4, 8, Ag2O3-, Au2O- and AunO2- for n = 1, 2 were synthesized using a PACIS and investigated systematically by time-resolved photoelectron spectroscopy: The clusters were excited by a pump pulse and the time-dependent development of the excited system was observed by recording photoelectron spectra using a second (probe) pulse. Different optical setups were installed within this work, because pump and probe energies had to be modified in order to access and probe excited states for various clusters.
1. Bare Silver Clusters
Agn- clusters were photoexcited by a 1,55 eV photon and photoelectron spectra were taken using a photon energy of 3.1 eV. For most of the species the excited state signal disappears on a time scale considerably shorter than 1 ps. Since the spacing between neighboring electronic levels is of the same order as the excitation energy and much larger than the typical energy of vibrational modes, relaxations via combinations of Auger-like processes and coupling of electronic and vibrational excitations are unlikely. The ability of these small clusters to deform after optical excitation is proposed to be responsible for the short relaxation times analogous to the previously studied case of Al13-. Qualitatively, the relationship of electronic shells and their gaps and the deformation of the clusters is described by the Nilsson diagram. With help of this diagram, a first qualitative understanding of the experimental data can be gained.
2. Silver Oxide Clusters
Excited states of AgnO2- clusters with even n = 2, 4 and 8 were discovered, having high photoabsorption cross sections for a pump energy of 3.1 eV. The excited states of these species are similar, although the electronic structure varies strongly with increasing number of Ag atoms in the cluster. The state is localized close to the oxygen molecule and decays for Ag2O2- into Ag2- and O2 via direct photoinduced desorption. On metal surfaces, direct desorption is unlikely, because any excited state is quenched effectively by the DOS near the Fermi energy. In clusters the DOS is low, allowing longer lifetimes and competing processes become more likely.
This interpretation is supported by the finding of an excited state with a long liftetime for Ag3O2-. Here, O2 is suggested to be dissociatively chemisorbed and the only remaining "fast" relaxation channel (desorption) is blocked. The lifetime increases by more than one order of magnitude to 5.4 ps.
3. Gold Oxide Clusters
Photofragmentation of Au2O- induced by excitation with a 3.1 eV photon was observed using one-color TR-PES. The data indicate the existence of an excited state of the anion with a very long lifetime of more than 100 ps. From this excited state, the parent anion decayed into Au- + AuO or AuO- + Au. Fragmentation did not start immediately after excitation but with a delay of 7 ps. A detailed analysis of the spectra at short delay times indicates that the delayed onset for fragmentation corresponds to the time for geometric rearrangement.
Au1O2- was studied using the blue-UV setup. For this cluster, oxygen is bound dissociatively, inhibiting relaxation by desorption of O2. Several excited states could be identified, all having relaxation times of about 31 ps. Relaxation via vibrational autodetachment is proposed for energy dissipation of this cluster.
For Au2O2-, a rather short-lived excited state (< 1 ps) could be observed using the blue-UV pump-probe scheme. Au2- could be identified in the spectra, suggesting photodesorption similar to the even numbered silver oxide clusters and Au2O-.
In summary, the results obtained in this work demonstrate that for small metal clusters fast thermalization is not always the dominant relaxation channel. Furthermore, direct photodesorption and long-lived excited states have been identified, which have not been observed from metal surfaces. Thus, photoactivation or photodesorption may prevail as dominant processes for such small clusters, suggesting unique photochemical properties and making them very interesting for photochemistry and promising candidates for future applications in energy storage, energy conversion and catalysis.
Zusammenfassung in einer weiteren Sprache
Im Hinblick auf geeignete Materialien für mögliche Anwendungen in der Katalyse und zur Energiekonversion wurden systematische Studien der Dynamik verschiedener massen-selektierter Cluster durchgeführt. Agn- (n = 3 bis 21), AgnO2- mit n = 2, 3, 4, 8, Ag2O3-, Au2O- und AunO2- für n = 1, 2 wurden mit Hilfe einer PACIS hergestellt und systematisch durch zeitaufgelöste Photoelektronenspektroskopie untersucht. Im Rahmen dieser Arbeit wurden verschiedene optische Versuchsanordnungen aufgebaut, da die Energien von Pump und Probe Puls angepasst werden mussten, um angeregte Zustände von verschiedenen Clustern erreichen und untersuchen zu können.
1. Reine Silbercluster
Agn- Cluster wurden durch 1.55 eV Photonen angeregt und Photoelektronenspektren mit einem zweiten Puls (3.1 eV Photonenenergie) aufgenommen. Bei den meisten untersuchten Clustern verschwindet das Pump-Probe Signal deutlich schneller als 1 ps. Da der Abstand benachbarter elektronischer Niveaus in der gleichen Größenordnung wie die Anregungsenergie liegt und viel größer als die Energie der Vibrationsmoden ist, ist Relaxation mittels einer Kombination von Auger-ähnlichen Prozessen und Elektron-Phonon Streuung unwahrscheinlich. Zur Erklärung wird deshalb ein anderer Effekt herangezogen, nämlich die Fähigkeit dieser kleinen Cluster, sich nach optischer Anregung zu deformieren, ähnlich dem zuvor untersuchten Al13-. Qualitativ kann die Beziehung zwischen den elektronischen Schalen und ihrer Abstände und der Deformation des Clusters durch das Nilsson-Diagramm beschrieben werden.
2. Silberoxidcluster
Für AgnO2- mit geradzahligem n = 2, 4 und 8 wurden angeregte Zustände entdeckt, die einen hohen Wirkungsquerschnitt für die Absorption von Photonen mit 3.1 eV haben. Die angeregten Zustände dieser Cluster verhalten sich ähnlich, obwohl sich die elektronische Struktur mit zunehmender Anzahl der Silberatome im Cluster stark ändert. Der angeregte Zustand ist nahe am Sauerstoffmolekül lokalisiert und führt beim Ag2O2- zum Zerfall in Ag2- und O2 durch direkte photoinduzierte Desorption. Analoge Messungen mit dem neuen blau-UV Aufbau (Pump-Photon 3.1 eV, Probe-Photon 4.65 eV) zeigen auch für Ag8O2- Photodesorption und weisen auf einen direkten Prozess hin. Der angeregte Zustand am Ag4O2- mit ähnlicher Energie, Lebensdauer und vibratorischer Feinstruktur deutet ebenfalls auf direkte Photodesorption hin. An Metalloberflächen hingegen ist direkte Photodesorption unwahrscheinlich, da angeregte Zustände wegen der hohen Zustandsdichte in der Nähe der Fermikante durch Auger-artige Prozess sehr schnell relaxieren können. Für Cluster ist die Zustandsdichte niedrig, deshalb sind längere Lebensdauern und Konkurrenzprozesse wie direkte Photodesorption wahrscheinlicher.
Diese Interpretation wird durch die lange Lebensdauer eines angeregten Zustands beim Ag3O2- gestützt. In diesem Fall ist O2 vermutlich dissoziativ chemisorbiert und der einzige "schnelle" Relaxationskanal (Desorption) ist blockiert. Die Lebensdauer ist dementsprechend um mehr als eine Größenordnung länger (5.4 ps).
3. Goldoxidcluster
Die Photofragmentation von Au2O- induziert durch ein 3.1 eV Photon wurde mittels TR-PES untersucht (Probe ebenfalls 3.1 eV). Dabei zeigte sich ein angeregter Zustand mit einer langen Lebensdauer von 110 ps. Aus diesem angeregten Zustand heraus zerfiel der Cluster in Au- + AuO oder AuO- + Au. Die Fragmentation setzte nicht sofort nach der Anregung ein, sondern mit einer Verzögerungszeit von 7 ps. Eine genaue Analyse der Spektren für kurze Verzögerungszeiten zwischen Pump- und Probe-Puls deutet daraufhin hin, dass der verzögerte Eintritt der Fragmentation der Zeit für eine geometrische Umordnung des Au2O- entspricht.
Au1O2- wurde mit Hilfe des blau-UV Aufbaus untersucht. An diesem Cluster ist Sauerstoff dissoziativ gebunden, so dass Relaxation durch Desorption von O2 nicht stattfinden kann. Mehrere angeregte Zustände konnten beobachtet werden, die alle Lebensdauern von ungefähr 31 ps haben. Vibratorisches Autodetachment ist ein möglicher Relaxationskanal.
Am Au2O2- wurde mittels des blau-UV Aufbaus ein eher kurzlebiger angeregter Zustand (< 1 ps) beobachtet. Au2- konnte in den Spektren identifiziert werden, was auf Photodesorption ähnlich den geradzahligen Silberoxiden und Au2O- hinweist.
Die Ergebnisse dieser Arbeit zeigen, dass für kleine Metallcluster schnelle Thermalisierung nicht immer der dominante Relaxationskanal darstellt. Außerdem wurden direkte Photodesorption sowie langlebige angeregte Zustände gefunden, was an Metalloberflächen bisher nicht beobachtet wurde. Dementsprechend können Photoaktivierung oder Photodesorption die dominanten Prozesse für solche kleinen Cluster bilden, was auf einzigartige photochemische Eigenschaften hindeutet und diese Cluster sehr interessant für Photochemie und als vielversprechende Kandidaten für Anwendungen in Energiespeicherung, Energiekonversion und Katalyse macht.
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
NIEMIETZ, Marco, 2007. Time-Resolved Spectroscopy of Bare and Reacted Gold and Silver Clusters : Materials for New Photochemistry? [Dissertation]. Konstanz: University of KonstanzBibTex
@phdthesis{Niemietz2007TimeR-9138, year={2007}, title={Time-Resolved Spectroscopy of Bare and Reacted Gold and Silver Clusters : Materials for New Photochemistry?}, author={Niemietz, Marco}, address={Konstanz}, school={Universität Konstanz} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/9138"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:53:57Z</dc:date> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/9138"/> <dc:format>application/pdf</dc:format> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:53:57Z</dcterms:available> <dc:contributor>Niemietz, Marco</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:title>Time-Resolved Spectroscopy of Bare and Reacted Gold and Silver Clusters : Materials for New Photochemistry?</dcterms:title> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/9138/1/Niemietz_Dissertation.pdf"/> <dcterms:issued>2007</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/9138/1/Niemietz_Dissertation.pdf"/> <dcterms:abstract xml:lang="eng">Led by the vision of searching for suitable candidates for future applications in catalysis and energy conversion, systematic studies on the dynamical properties of several size-selected clusters have been performed. The following questions were addressed:<br />- What are the basic relaxation mechanisms of clusters consisting of s/p-metals? Do bare silver clusters show similar properties to the previously studied gold or aluminum clusters?<br />- Do metal clusters exhibit different dynamical behavior from bulk metals with respect to photon induced desorption?<br />- Can species with long-lived excited states be identified?<br />In order to address these issues, Agn- (n up to 21), AgnO2- with n = 2, 3, 4, 8, Ag2O3-, Au2O- and AunO2- for n = 1, 2 were synthesized using a PACIS and investigated systematically by time-resolved photoelectron spectroscopy: The clusters were excited by a pump pulse and the time-dependent development of the excited system was observed by recording photoelectron spectra using a second (probe) pulse. Different optical setups were installed within this work, because pump and probe energies had to be modified in order to access and probe excited states for various clusters.<br />1. Bare Silver Clusters<br />Agn- clusters were photoexcited by a 1,55 eV photon and photoelectron spectra were taken using a photon energy of 3.1 eV. For most of the species the excited state signal disappears on a time scale considerably shorter than 1 ps. Since the spacing between neighboring electronic levels is of the same order as the excitation energy and much larger than the typical energy of vibrational modes, relaxations via combinations of Auger-like processes and coupling of electronic and vibrational excitations are unlikely. The ability of these small clusters to deform after optical excitation is proposed to be responsible for the short relaxation times analogous to the previously studied case of Al13-. Qualitatively, the relationship of electronic shells and their gaps and the deformation of the clusters is described by the Nilsson diagram. With help of this diagram, a first qualitative understanding of the experimental data can be gained.<br />2. Silver Oxide Clusters<br />Excited states of AgnO2- clusters with even n = 2, 4 and 8 were discovered, having high photoabsorption cross sections for a pump energy of 3.1 eV. The excited states of these species are similar, although the electronic structure varies strongly with increasing number of Ag atoms in the cluster. The state is localized close to the oxygen molecule and decays for Ag2O2- into Ag2- and O2 via direct photoinduced desorption. On metal surfaces, direct desorption is unlikely, because any excited state is quenched effectively by the DOS near the Fermi energy. In clusters the DOS is low, allowing longer lifetimes and competing processes become more likely.<br />This interpretation is supported by the finding of an excited state with a long liftetime for Ag3O2-. Here, O2 is suggested to be dissociatively chemisorbed and the only remaining "fast" relaxation channel (desorption) is blocked. The lifetime increases by more than one order of magnitude to 5.4 ps.<br />3. Gold Oxide Clusters<br />Photofragmentation of Au2O- induced by excitation with a 3.1 eV photon was observed using one-color TR-PES. The data indicate the existence of an excited state of the anion with a very long lifetime of more than 100 ps. From this excited state, the parent anion decayed into Au- + AuO or AuO- + Au. Fragmentation did not start immediately after excitation but with a delay of 7 ps. A detailed analysis of the spectra at short delay times indicates that the delayed onset for fragmentation corresponds to the time for geometric rearrangement.<br />Au1O2- was studied using the blue-UV setup. For this cluster, oxygen is bound dissociatively, inhibiting relaxation by desorption of O2. Several excited states could be identified, all having relaxation times of about 31 ps. Relaxation via vibrational autodetachment is proposed for energy dissipation of this cluster.<br />For Au2O2-, a rather short-lived excited state (< 1 ps) could be observed using the blue-UV pump-probe scheme. Au2- could be identified in the spectra, suggesting photodesorption similar to the even numbered silver oxide clusters and Au2O-.<br />In summary, the results obtained in this work demonstrate that for small metal clusters fast thermalization is not always the dominant relaxation channel. Furthermore, direct photodesorption and long-lived excited states have been identified, which have not been observed from metal surfaces. Thus, photoactivation or photodesorption may prevail as dominant processes for such small clusters, suggesting unique photochemical properties and making them very interesting for photochemistry and promising candidates for future applications in energy storage, energy conversion and catalysis.</dcterms:abstract> <dcterms:alternative>Zeitaufgelöste Spektroskopie von reinen und reagierten Gold- und Silberclustern: Materialien für neuartige Photochemie?</dcterms:alternative> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Niemietz, Marco</dc:creator> </rdf:Description> </rdf:RDF>