Kupfergalliumdiselenid-Dünnschichten für Anwendungen in der Photovoltaik

Lade...
Vorschaubild
Dateien
DissertationOrtwinSchenker.pdf
DissertationOrtwinSchenker.pdfGröße: 5.15 MBDownloads: 446
Datum
2002
Autor:innen
Schenker, Ortwin
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Copper-Gallium-Diselenide Thin Films for Applications in Photovoltaics
Publikationstyp
Dissertation
Publikationsstatus
Published
Erschienen in
Zusammenfassung

The emphasis of this work was laid on investigations of processes that would allow in principle the industrial production of CuGaSe2 thin films for photovoltaic applications. Most attention was given to the SEL-RTP Method (stacked-elemental-layers rapid-thermal-processing) where a stack of elements is deposited sequentially. Afterwards the chalcopyrite layer is synthesized in a short high temperature step from this precursor. First the absorber layers seemed to be very suitable for solar cells. Single phase material was obtained. Structural as well as in situ resistivity measurements indicated that after a processing time of about six minutes the chalcopyrite formation was finished. A closer analysis of the absorber layers revealed that the elemental distribution over the depth of the layer was inhomogeneous. Loosely packed CuGaSe2 crystallites were embedded in a gallium and selenium rich matrix which was mainly localized close to the substrate. We found that the crucial factor for the CuGaSe2 formation is the formation temperature. In the usable temperature range below 600°C the affinity of the CuGaSe2 structure for the incorporation of gallium is not very pronounced. From this arises a discrepancy between the composition of the total layer and the actual composition of the crystallites. The maximum cell efficiency that was obtained from SEL-RTP processed CuGaSe2 absorbers was 3,8 The influence of the reaction kinetics can be seen most clearly when compared with absorbers based on CuIn1-xGaxSe2 . Here already process temperatures of 400°C result in single phase chalcopyrite material. With this CuIn1-GaxSe2 absorber layers maximum efficiencies of 10.2 could be obtained. This results allow us to conclude that the low efficiencies reached in this work with CuGaSe2 where mainly limited by the absorber layers.

Zusammenfassung in einer weiteren Sprache

Der Schwerpunkt der Arbeit lag auf der Untersuchung von Prozessen, die prinzipiell eine industrielle Herstellung von CuGaSe2-Dünnschichten für Anwendungen in der Photovoltaik erlauben. Dabei wurde die sequentielle Deposition von Elementschichtstapeln mit einem nachfolgenden kurzen Hochtemperaturschritt als Synthesemethode besonders intensiv untersucht (SEL-RTP Verfahren). Zunächst schienen die Absorberschichten die erhalten wurden, als sehr vielversprechend zur Solarzellenherstellung. Es lag einphasiges Material vor. Sowohl strukturelle Untersuchungen als auch in situ Messungen der Leitfähigkeit zeigten an, daß nach einer Prozeßierungszeit von ca. sechs Minuten die Chalkopyritbildung beendet ist. Eine genauere Analyse der Absorberschichten ergab, daß keine homogene Elementverteilung über die Schichttiefe vorlag. Lose angeordnete CuGaSe2-Kristallite waren in einer gallium- und selenreichen Matrix eingebettet, die in Substratnähe lokalisiert ist. Dabei zeigte sich, daß die Prozeßtemperatur der entscheidende Faktor bei der CuGaSe2-Synthese ist. Bei den benutzten Temperaturen unterhalb von 600°C ist die Affinität der CuGaSe2- Struktur zum Einbau von Gallium, nur schwach ausgeprägt. Hieraus resultierte eine Diskrepanz zwischen der Zusammensetzung der Gesamtschicht und der tatsächlichen Zusammensetzung der CuGaSe2-Kristallite. Der maximale Solarzellenwirkungsgrad, der mit SEL-RTP prozessierten Absorbern erreicht wurde, betrug 3,8 Der Einfluß der Reaktionskinetik zeigte sich insbesondere im Vergleich mit Absorbern auf der Basis von CuIn1-XGaXSe2. Hier konnte man bereits bei Prozeßtemperaturen von etwa 400°C einphasiges Chalkopyritmaterial erhalten. Mit den hergestellten CuIn1-XGaXSe2-Absorbern wurden maximale Wirkungsgrade von 10,2, erzielt. Diese Ergebnisse erlaubten den Rückschluß, daß die in dieser Arbeit auf der Basis von CuGaSe2-Absorbern erreichten geringen Wirkungsgrade im wesentlichen durch die Absorberschicht bedingt sind.

Fachgebiet (DDC)
530 Physik
Schlagwörter
Chalkopyrit, RTP, chalcopyrite, solar cells, RTP, copper-gallium-diselenide, absorber
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690SCHENKER, Ortwin, 2002. Kupfergalliumdiselenid-Dünnschichten für Anwendungen in der Photovoltaik [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Schenker2002Kupfe-4800,
  year={2002},
  title={Kupfergalliumdiselenid-Dünnschichten für Anwendungen in der Photovoltaik},
  author={Schenker, Ortwin},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/4800">
    <dc:creator>Schenker, Ortwin</dc:creator>
    <dc:contributor>Schenker, Ortwin</dc:contributor>
    <dcterms:title>Kupfergalliumdiselenid-Dünnschichten für Anwendungen in der Photovoltaik</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2002</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T14:50:25Z</dc:date>
    <dc:format>application/pdf</dc:format>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:abstract xml:lang="eng">The emphasis of this work was laid on investigations of processes that would allow in principle the industrial production of CuGaSe2 thin films for photovoltaic applications. Most attention was given to the SEL-RTP Method (stacked-elemental-layers rapid-thermal-processing) where a stack of elements is deposited sequentially. Afterwards the chalcopyrite layer is synthesized in a short high temperature step from this precursor. First the absorber layers seemed to be very suitable for solar cells. Single phase material was obtained. Structural as well as in situ resistivity measurements indicated that after a processing time of about six minutes the chalcopyrite formation was finished. A closer analysis of the absorber layers revealed that the elemental distribution over the depth of the layer was inhomogeneous. Loosely packed CuGaSe2 crystallites were embedded in a gallium and selenium rich matrix which was mainly localized close to the substrate. We found  that the crucial factor for the CuGaSe2  formation is the formation temperature. In the usable temperature range below 600°C the affinity of the CuGaSe2 structure for the incorporation of gallium is not very pronounced. From this arises a discrepancy between the composition of the total layer and the actual composition of the crystallites. The maximum cell efficiency that was  obtained from SEL-RTP processed CuGaSe2 absorbers was 3,8 The influence of the reaction kinetics can be seen most clearly when compared with absorbers based on CuIn1-xGaxSe2 . Here already  process temperatures of 400°C result  in single phase chalcopyrite material.  With this CuIn1-GaxSe2  absorber layers maximum efficiencies of  10.2 could be obtained. This results allow us to conclude that the low efficiencies reached in this work with CuGaSe2 where mainly limited by the absorber layers.</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:alternative>Copper-Gallium-Diselenide Thin Films for Applications in Photovoltaics</dcterms:alternative>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/4800"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/4800/1/DissertationOrtwinSchenker.pdf"/>
    <dc:language>deu</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T14:50:25Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/4800/1/DissertationOrtwinSchenker.pdf"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
July 3, 2002
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen