Identification of Structural Vector Autoregressions by Stochastic Volatility

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2022
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Business & Economic Statistics. Taylor & Francis. 2022, 40(1), pp. 328-341. ISSN 0735-0015. eISSN 1537-2707. Available under: doi: 10.1080/07350015.2020.1813588
Zusammenfassung

We propose to exploit stochastic volatility for statistical identification of structural vector autoregressive models (SV-SVAR). We discuss full and partial identification of the model and develop efficient EM algorithms for maximum likelihood inference. Simulation evidence suggests that the SV-SVAR works well in identifying structural parameters also under misspecification of the variance process, particularly if compared to alternative heteroscedastic SVARs. We apply the model to study the importance of oil supply shocks for driving oil prices. Since shocks identified by heteroscedasticity may not be economically meaningful, we exploit the framework to test instrumental variable restrictions which are overidentifying in the heteroscedastic model. Our findings suggest that conventional supply shocks are negligible, while news shocks about future supply account for almost all the variation in oil prices.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
330 Wirtschaft
Schlagwörter
External instruments, Identification via heteroscedasticity, Stochastic volatility, Structural vector autoregression
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690BERTSCHE, Dominik, Robin BRAUN, 2022. Identification of Structural Vector Autoregressions by Stochastic Volatility. In: Journal of Business & Economic Statistics. Taylor & Francis. 2022, 40(1), pp. 328-341. ISSN 0735-0015. eISSN 1537-2707. Available under: doi: 10.1080/07350015.2020.1813588
BibTex
@article{Bertsche2022Ident-51727,
  year={2022},
  doi={10.1080/07350015.2020.1813588},
  title={Identification of Structural Vector Autoregressions by Stochastic Volatility},
  number={1},
  volume={40},
  issn={0735-0015},
  journal={Journal of Business & Economic Statistics},
  pages={328--341},
  author={Bertsche, Dominik and Braun, Robin}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51727">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51727"/>
    <dc:contributor>Braun, Robin</dc:contributor>
    <dc:creator>Bertsche, Dominik</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:contributor>Bertsche, Dominik</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">We propose to exploit stochastic volatility for statistical identification of structural vector autoregressive models (SV-SVAR). We discuss full and partial identification of the model and develop efficient EM algorithms for maximum likelihood inference. Simulation evidence suggests that the SV-SVAR works well in identifying structural parameters also under misspecification of the variance process, particularly if compared to alternative heteroscedastic SVARs. We apply the model to study the importance of oil supply shocks for driving oil prices. Since shocks identified by heteroscedasticity may not be economically meaningful, we exploit the framework to test instrumental variable restrictions which are overidentifying in the heteroscedastic model. Our findings suggest that conventional supply shocks are negligible, while news shocks about future supply account for almost all the variation in oil prices.</dcterms:abstract>
    <dcterms:issued>2022</dcterms:issued>
    <dc:creator>Braun, Robin</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-11T08:18:28Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-11T08:18:28Z</dc:date>
    <dcterms:title>Identification of Structural Vector Autoregressions by Stochastic Volatility</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Nein
Diese Publikation teilen