Publikation:

Identification of Structural Vector Autoregressions by Stochastic Volatility

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2022

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Business & Economic Statistics. Taylor & Francis. 2022, 40(1), pp. 328-341. ISSN 0735-0015. eISSN 1537-2707. Available under: doi: 10.1080/07350015.2020.1813588

Zusammenfassung

We propose to exploit stochastic volatility for statistical identification of structural vector autoregressive models (SV-SVAR). We discuss full and partial identification of the model and develop efficient EM algorithms for maximum likelihood inference. Simulation evidence suggests that the SV-SVAR works well in identifying structural parameters also under misspecification of the variance process, particularly if compared to alternative heteroscedastic SVARs. We apply the model to study the importance of oil supply shocks for driving oil prices. Since shocks identified by heteroscedasticity may not be economically meaningful, we exploit the framework to test instrumental variable restrictions which are overidentifying in the heteroscedastic model. Our findings suggest that conventional supply shocks are negligible, while news shocks about future supply account for almost all the variation in oil prices.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
330 Wirtschaft

Schlagwörter

External instruments, Identification via heteroscedasticity, Stochastic volatility, Structural vector autoregression

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BERTSCHE, Dominik, Robin BRAUN, 2022. Identification of Structural Vector Autoregressions by Stochastic Volatility. In: Journal of Business & Economic Statistics. Taylor & Francis. 2022, 40(1), pp. 328-341. ISSN 0735-0015. eISSN 1537-2707. Available under: doi: 10.1080/07350015.2020.1813588
BibTex
@article{Bertsche2022Ident-51727,
  year={2022},
  doi={10.1080/07350015.2020.1813588},
  title={Identification of Structural Vector Autoregressions by Stochastic Volatility},
  number={1},
  volume={40},
  issn={0735-0015},
  journal={Journal of Business & Economic Statistics},
  pages={328--341},
  author={Bertsche, Dominik and Braun, Robin}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51727">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51727"/>
    <dc:contributor>Braun, Robin</dc:contributor>
    <dc:creator>Bertsche, Dominik</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:contributor>Bertsche, Dominik</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">We propose to exploit stochastic volatility for statistical identification of structural vector autoregressive models (SV-SVAR). We discuss full and partial identification of the model and develop efficient EM algorithms for maximum likelihood inference. Simulation evidence suggests that the SV-SVAR works well in identifying structural parameters also under misspecification of the variance process, particularly if compared to alternative heteroscedastic SVARs. We apply the model to study the importance of oil supply shocks for driving oil prices. Since shocks identified by heteroscedasticity may not be economically meaningful, we exploit the framework to test instrumental variable restrictions which are overidentifying in the heteroscedastic model. Our findings suggest that conventional supply shocks are negligible, while news shocks about future supply account for almost all the variation in oil prices.</dcterms:abstract>
    <dcterms:issued>2022</dcterms:issued>
    <dc:creator>Braun, Robin</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-11T08:18:28Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-11T08:18:28Z</dc:date>
    <dcterms:title>Identification of Structural Vector Autoregressions by Stochastic Volatility</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Nein
Diese Publikation teilen