Identification of Structural Vector Autoregressions by Stochastic Volatility
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We propose to exploit stochastic volatility for statistical identification of structural vector autoregressive models (SV-SVAR). We discuss full and partial identification of the model and develop efficient EM algorithms for maximum likelihood inference. Simulation evidence suggests that the SV-SVAR works well in identifying structural parameters also under misspecification of the variance process, particularly if compared to alternative heteroscedastic SVARs. We apply the model to study the importance of oil supply shocks for driving oil prices. Since shocks identified by heteroscedasticity may not be economically meaningful, we exploit the framework to test instrumental variable restrictions which are overidentifying in the heteroscedastic model. Our findings suggest that conventional supply shocks are negligible, while news shocks about future supply account for almost all the variation in oil prices.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BERTSCHE, Dominik, Robin BRAUN, 2022. Identification of Structural Vector Autoregressions by Stochastic Volatility. In: Journal of Business & Economic Statistics. Taylor & Francis. 2022, 40(1), pp. 328-341. ISSN 0735-0015. eISSN 1537-2707. Available under: doi: 10.1080/07350015.2020.1813588BibTex
@article{Bertsche2022Ident-51727, year={2022}, doi={10.1080/07350015.2020.1813588}, title={Identification of Structural Vector Autoregressions by Stochastic Volatility}, number={1}, volume={40}, issn={0735-0015}, journal={Journal of Business & Economic Statistics}, pages={328--341}, author={Bertsche, Dominik and Braun, Robin} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51727"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51727"/> <dc:contributor>Braun, Robin</dc:contributor> <dc:creator>Bertsche, Dominik</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dc:contributor>Bertsche, Dominik</dc:contributor> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">We propose to exploit stochastic volatility for statistical identification of structural vector autoregressive models (SV-SVAR). We discuss full and partial identification of the model and develop efficient EM algorithms for maximum likelihood inference. Simulation evidence suggests that the SV-SVAR works well in identifying structural parameters also under misspecification of the variance process, particularly if compared to alternative heteroscedastic SVARs. We apply the model to study the importance of oil supply shocks for driving oil prices. Since shocks identified by heteroscedasticity may not be economically meaningful, we exploit the framework to test instrumental variable restrictions which are overidentifying in the heteroscedastic model. Our findings suggest that conventional supply shocks are negligible, while news shocks about future supply account for almost all the variation in oil prices.</dcterms:abstract> <dcterms:issued>2022</dcterms:issued> <dc:creator>Braun, Robin</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-11T08:18:28Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-11T08:18:28Z</dc:date> <dcterms:title>Identification of Structural Vector Autoregressions by Stochastic Volatility</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>