Publikation:

Fine-grained subjective visual quality assessment for high-fidelity compressed images

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2025

Autor:innen

Testolina, Michela
Mohammadi, Shima
Ascenso, Joao
Ebrahimi, Touradj
Sneyers, Jon

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): 496858717
Deutsche Forschungsgemeinschaft (DFG): 251654672
Swiss National Science Foundation: 200020 20791

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Sonstiges, Konferenz
Publikationsstatus
Published

Erschienen in

Zusammenfassung

Advances in image compression, storage, and display technologies have made high-quality images and videos widely accessible. At this level of quality, distinguishing between compressed and original content becomes difficult, highlighting the need for assessment methodologies that are sensitive to even the smallest visual quality differences. Conventional subjective visual quality assessments often use absolute category rating scales, ranging from "excellent" to "bad". While suitable for evaluating more pronounced distortions, these scales are inadequate for detecting subtle visual differences. The JPEG standardization project AIC is currently developing a subjective image quality assessment methodology for high-fidelity images. This paper presents the proposed assessment methods, a dataset of high-quality compressed images, and their corresponding crowdsourced visual quality ratings. It also outlines a data analysis approach that reconstructs quality scale values in just noticeable difference (JND) units. The assessment method uses boosting techniques on visual stimuli to help observers detect compression artifacts more clearly. This is followed by a rescaling process that adjusts the boosted quality values back to the original perceptual scale. This reconstruction yields a fine-grained, high-precision quality scale in JND units, providing more informative results for practical applications. The dataset and code to reproduce the results will be available at https://github.com/jpeg-aic/dataset-BTC-PTC-24.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

subjective visual quality assessment, just noticeable difference (JND), high-fidelity compressed images, JPEG AIC, crowdsourcing, image dataset

Konferenz

Data Compression Conference (DCC), 18. März 2025 - 21. März 2025, Snowbird, UT, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690TESTOLINA, Michela, Mohsen JENADELEH, Shima MOHAMMADI, Shaolin SU, Joao ASCENSO, Touradj EBRAHIMI, Jon SNEYERS, Dietmar SAUPE, 2025. Fine-grained subjective visual quality assessment for high-fidelity compressed images. Data Compression Conference (DCC). Snowbird, UT, USA, 18. März 2025 - 21. März 2025
BibTex
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73015">
    <dc:creator>Sneyers, Jon</dc:creator>
    <dc:contributor>Sneyers, Jon</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Testolina, Michela</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-11T11:51:07Z</dc:date>
    <dc:creator>Ascenso, Joao</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Ebrahimi, Touradj</dc:creator>
    <dcterms:abstract>Advances in image compression, storage, and display technologies have made high-quality images and videos widely accessible. At this level of quality, distinguishing between compressed and original content becomes difficult, highlighting the need for assessment methodologies that are sensitive to even the smallest visual quality differences. Conventional subjective visual quality assessments often use absolute category rating scales, ranging from "excellent" to "bad". While suitable for evaluating more pronounced distortions, these scales are inadequate for detecting subtle visual differences. The JPEG standardization project AIC is currently developing a subjective image quality assessment methodology for high-fidelity images. This paper presents the proposed assessment methods, a dataset of high-quality compressed images, and their corresponding crowdsourced visual quality ratings. It also outlines a data analysis approach that reconstructs quality scale values in just noticeable difference (JND) units. The assessment method uses boosting techniques on visual stimuli to help observers detect compression artifacts more clearly. This is followed by a rescaling process that adjusts the boosted quality values back to the original perceptual scale. This reconstruction yields a fine-grained, high-precision quality scale in JND units, providing more informative results for practical applications. The dataset and code to reproduce the results will be available at https://github.com/jpeg-aic/dataset-BTC-PTC-24.</dcterms:abstract>
    <dc:creator>Mohammadi, Shima</dc:creator>
    <dc:contributor>Mohammadi, Shima</dc:contributor>
    <dcterms:issued>2025-03</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Testolina, Michela</dc:contributor>
    <dc:contributor>Jenadeleh, Mohsen</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-11T11:51:07Z</dcterms:available>
    <dc:contributor>Su, Shaolin</dc:contributor>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Ebrahimi, Touradj</dc:contributor>
    <dc:contributor>Ascenso, Joao</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73015"/>
    <dc:creator>Su, Shaolin</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Jenadeleh, Mohsen</dc:creator>
    <dcterms:title>Fine-grained subjective visual quality assessment for high-fidelity compressed images</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:creator>Saupe, Dietmar</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen