Uncertainty-aware Visual Analytics for Spatio-temporal Data Exploration

Lade...
Vorschaubild
Dateien
Senaratne_0-424125.pdf
Senaratne_0-424125.pdfGröße: 107.99 MBDownloads: 245
Datum
2017
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Dissertation
Publikationsstatus
Published
Erschienen in
Zusammenfassung

Uncertainty in spatio-temporal data is described as the discrepancy between a measured value of an object and the true value of that object. Common causes of uncertainty in data can be identi ed as errors of precision in the data measurement devices, inadequate domain knowledge of the data collector, absence of gatekeepers etc., known in this dissertation as inherent or source uncertainties. These inherent uncertainties further vary depending on the type of data (e.g., geotagged text or image data), as well as the explicit and implicit nature of the spatial dimension in the data. Static and dynamic visualisation methods have been used to communicate uncertainties. However, a gap we see in such uncertainty visualisations is that users have little to no leeway of controlling the system outcomes (e.g., by weighing in their domain expertise, control to what extent uncertainty plays a role in the analysis, or reduce uncertainty in the data). Visual analytics help to fill this gap by allowing the user to steer the analysis process through interaction. The challenge of uncertainty analysis with visual analytics is that we not only have to encounter the inherent data uncertainties, but also the uncertainties that keep propagating through every component in a visual analytics system (the data, data models, data visualisations and model-visualisation couplings), and through every interaction from the user. To address this challenge, this dissertation introduces a framework that de fines the role of uncertainty throughout the visual analytics knowledge generation process. At each component of the visual analytics system, guidelines in terms of methods are specifi ed for assessing the uncertainties. Following this framework, four novel visual analytics approaches are introduced that enable a user to explore, assess, and mitigate context-specifi c uncertainties in heterogeneous data types: image data, text data, location data, and numerical data. By enabling a strong interaction between the user and the system, uncertainties are mitigated and trustworthy knowledge is extracted, thereby bridging the gap identi fied in static and dynamic uncertainty visualisations. The approaches developed are evaluated against anecdotal evidences and a usability experiment.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690SENARATNE, Hansi, 2017. Uncertainty-aware Visual Analytics for Spatio-temporal Data Exploration [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Senaratne2017Uncer-40096,
  year={2017},
  title={Uncertainty-aware Visual Analytics for Spatio-temporal Data Exploration},
  author={Senaratne, Hansi},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40096">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/40096/3/Senaratne_0-424125.pdf"/>
    <dc:contributor>Senaratne, Hansi</dc:contributor>
    <dcterms:title>Uncertainty-aware Visual Analytics for Spatio-temporal Data Exploration</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-09-18T11:13:35Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2017</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/40096/3/Senaratne_0-424125.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40096"/>
    <dcterms:abstract xml:lang="eng">Uncertainty in spatio-temporal data is described as the discrepancy between a measured value of an object and the true value of that object. Common causes of uncertainty in data can be identi ed as errors of precision in the data measurement devices, inadequate domain knowledge of the data collector, absence of gatekeepers etc., known in this dissertation as inherent or source uncertainties. These inherent uncertainties further vary depending on the type of data (e.g., geotagged text or image data), as well as the explicit and implicit nature of the spatial dimension in the data. Static and dynamic visualisation methods have been used to communicate uncertainties. However, a gap we see in such uncertainty visualisations is that users have little to no leeway of controlling the system outcomes (e.g., by weighing in their domain expertise, control to what extent uncertainty plays a role in the analysis, or reduce uncertainty in the data). Visual analytics help to  fill this gap by allowing the user to steer the analysis process through interaction. The challenge of uncertainty analysis with visual analytics is that we not only have to encounter the inherent data uncertainties, but also the uncertainties that keep propagating through every component in a visual analytics system (the data, data models, data visualisations and model-visualisation couplings), and through every interaction from the user. To address this challenge, this dissertation introduces a framework that de fines the role of uncertainty throughout the visual analytics knowledge generation process. At each component of the visual analytics system, guidelines in terms of methods are specifi ed for assessing the uncertainties. Following this framework, four novel visual analytics approaches are introduced that enable a user to explore, assess, and mitigate context-specifi c uncertainties in heterogeneous data types: image data, text data, location data, and numerical data. By enabling a strong interaction between the user and the system, uncertainties are mitigated and trustworthy knowledge is extracted, thereby bridging the gap identi fied in static and dynamic uncertainty visualisations. The approaches developed are evaluated against anecdotal evidences and a usability experiment.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Senaratne, Hansi</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-09-18T11:13:35Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
May 5, 2017
Hochschulschriftenvermerk
Konstanz, Univ., Diss., 2017
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen