DeAF : A multimodal deep learning framework for disease prediction
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Multimodal deep learning models have been applied for disease prediction tasks, but difficulties exist in training due to the conflict between sub-models and fusion modules. To alleviate this issue, we propose a framework for decoupling feature alignment and fusion (DeAF), which separates the multimodal model training into two stages. In the first stage, unsupervised representation learning is conducted, and the modality adaptation (MA) module is used to align the features from various modalities. In the second stage, the self-attention fusion (SAF) module combines the medical image features and clinical data using supervised learning. Moreover, we apply the DeAF framework to predict the postoperative efficacy of CRS for colorectal cancer and whether the MCI patients change to Alzheimer’s disease. The DeAF framework achieves a significant improvement in comparison to the previous methods. Furthermore, extensive ablation experiments are conducted to demonstrate the rationality and effectiveness of our framework. In conclusion, our framework enhances the interaction between the local medical image features and clinical data, and derive more discriminative multimodal features for disease prediction. The framework implementation is available at https://github.com/cchencan/DeAF.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LI, Kangshun, Can CHEN, Wuteng CAO, Hui WANG, Shuai HAN, Renjie WANG, Zaisheng YE, Zhijie WU, Deyu DING, Zixu YUAN, 2023. DeAF : A multimodal deep learning framework for disease prediction. In: Computers in Biology and Medicine. Elsevier. 2023, 156, 106715. ISSN 0010-4825. eISSN 1879-0534. Available under: doi: 10.1016/j.compbiomed.2023.106715BibTex
@article{Li2023multi-66702, year={2023}, doi={10.1016/j.compbiomed.2023.106715}, title={DeAF : A multimodal deep learning framework for disease prediction}, volume={156}, issn={0010-4825}, journal={Computers in Biology and Medicine}, author={Li, Kangshun and Chen, Can and Cao, Wuteng and Wang, Hui and Han, Shuai and Wang, Renjie and Ye, Zaisheng and Wu, Zhijie and Ding, Deyu and Yuan, Zixu}, note={Article Number: 106715} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66702"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dc:contributor>Ye, Zaisheng</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-21T08:31:37Z</dc:date> <dc:contributor>Yuan, Zixu</dc:contributor> <dc:contributor>Han, Shuai</dc:contributor> <dcterms:abstract>Multimodal deep learning models have been applied for disease prediction tasks, but difficulties exist in training due to the conflict between sub-models and fusion modules. To alleviate this issue, we propose a framework for decoupling feature alignment and fusion (DeAF), which separates the multimodal model training into two stages. In the first stage, unsupervised representation learning is conducted, and the modality adaptation (MA) module is used to align the features from various modalities. In the second stage, the self-attention fusion (SAF) module combines the medical image features and clinical data using supervised learning. Moreover, we apply the DeAF framework to predict the postoperative efficacy of CRS for colorectal cancer and whether the MCI patients change to Alzheimer’s disease. The DeAF framework achieves a significant improvement in comparison to the previous methods. Furthermore, extensive ablation experiments are conducted to demonstrate the rationality and effectiveness of our framework. In conclusion, our framework enhances the interaction between the local medical image features and clinical data, and derive more discriminative multimodal features for disease prediction. The framework implementation is available at https://github.com/cchencan/DeAF.</dcterms:abstract> <dc:creator>Wang, Renjie</dc:creator> <dc:creator>Wu, Zhijie</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-21T08:31:37Z</dcterms:available> <dcterms:issued>2023</dcterms:issued> <dc:contributor>Ding, Deyu</dc:contributor> <dc:creator>Cao, Wuteng</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dc:contributor>Wang, Renjie</dc:contributor> <dc:creator>Wang, Hui</dc:creator> <dc:creator>Ye, Zaisheng</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66702"/> <dc:creator>Chen, Can</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Han, Shuai</dc:creator> <dc:creator>Ding, Deyu</dc:creator> <dc:creator>Li, Kangshun</dc:creator> <dc:contributor>Li, Kangshun</dc:contributor> <dc:contributor>Cao, Wuteng</dc:contributor> <dc:contributor>Wu, Zhijie</dc:contributor> <dc:contributor>Chen, Can</dc:contributor> <dc:creator>Yuan, Zixu</dc:creator> <dc:contributor>Wang, Hui</dc:contributor> <dc:language>eng</dc:language> <dcterms:title>DeAF : A multimodal deep learning framework for disease prediction</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>