CloudLines : compact display of event episodes in multiple time-series

Lade...
Vorschaubild
Dateien
Keim.pdf
Keim.pdfGröße: 5.18 MBDownloads: 2635
Datum
2011
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
IEEE Transactions on Visualization and Computer Graphics. 2011, 17(12), pp. 2432-2439. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2011.179
Zusammenfassung

We propose incremental time-series visualization technique with interactive distortion as a way to deal with time-based representations of large and dynamic event data sets in limited space. Modern data analysis challenges in the domains of news publishing, network security and financial services require scalable solutions that will help the users to analyze the event data on atomic level while retaining the temporal context. The incremental nature of the data implies that visualizations have to necessarily change their content and still provide comprehensible representations. In this paper, we deal with the need to keep an eye on recent events together with providing a context on the past and making relevant patterns accessible at any scale. Our method adapts to the incoming data by using a decay function to let the items fade away according to their relevance. Since access to details is also important, we also provide a magnifying lens technique which takes into account the distortions introduced by the logarithmic time scale to enhance readability in selected areas of interest. We demonstrate the validity of our techniques by applying them on incremental data coming from online news streams in different time frames.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Incremental visualization, event-based data, lens distortion
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690KRSTAJIC, Milos, Enrico BERTINI, Daniel A. KEIM, 2011. CloudLines : compact display of event episodes in multiple time-series. In: IEEE Transactions on Visualization and Computer Graphics. 2011, 17(12), pp. 2432-2439. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2011.179
BibTex
@article{Krstajic2011-12Cloud-17483,
  year={2011},
  doi={10.1109/TVCG.2011.179},
  title={CloudLines : compact display of event episodes in multiple time-series},
  number={12},
  volume={17},
  issn={1077-2626},
  journal={IEEE Transactions on Visualization and Computer Graphics},
  pages={2432--2439},
  author={Krstajic, Milos and Bertini, Enrico and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/17483">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:title>CloudLines : compact display of event episodes in multiple time-series</dcterms:title>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/17483"/>
    <dc:creator>Bertini, Enrico</dc:creator>
    <dc:creator>Krstajic, Milos</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Bertini, Enrico</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:bibliographicCitation>First publ. in: IEEE Transactions on Visualization and Computer Graphics ; 17 (2011), 12. - S. 2432-2439</dcterms:bibliographicCitation>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2011-12</dcterms:issued>
    <dc:contributor>Krstajic, Milos</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/17483/1/Keim.pdf"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:abstract xml:lang="eng">We propose incremental time-series visualization technique with interactive distortion as a way to deal with time-based representations of large and dynamic event data sets in limited space. Modern data analysis challenges in the domains of news publishing, network security and financial services require scalable solutions that will help the users to analyze the event data on atomic level while retaining the temporal context. The incremental nature of the data implies that visualizations have to necessarily change their content and still provide comprehensible representations. In this paper, we deal with the need to keep an eye on recent events together with providing a context on the past and making relevant patterns accessible at any scale. Our method adapts to the incoming data by using a decay function to let the items fade away according to their relevance. Since access to details is also important, we also provide a magnifying lens technique which takes into account the distortions introduced by the logarithmic time scale to enhance readability in selected areas of interest. We demonstrate the validity of our techniques by applying them on incremental data coming from online news streams in different time frames.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-01-13T12:50:05Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/17483/1/Keim.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-01-13T12:50:05Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen