Using Data Combination of Fundamental Variable-Based Forecasts and Poll-Based Forecasts to Predict the 2013 German Election

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2018
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
German Politics. 2018, 27(1), pp. 25-43. ISSN 0964-4008. eISSN 1743-8993. Available under: doi: 10.1080/09644008.2017.1280781
Zusammenfassung

In this paper I present an election forecasting approach to predict the vote share of the governing coalition in German national elections. The model is composed of two independent prediction components: the first is based on poll data, the second on fundamental variables. Both approaches have their advantages and disadvantages when used in isolation. The basic idea is to use both and find a better informed overall forecast. The predictions are combined using a shrinkage estimator, where the predictions are weighted by their respective prediction uncertainty. The uncertainty of the poll prediction is modelled time-dependent. The result is a dynamic model allowing for predictions longer before the elections highly relying on fundamental variables. With the elections coming closer predictions rely more and more on the polling data.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
320 Politik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690KÜNTZLER, Theresa, 2018. Using Data Combination of Fundamental Variable-Based Forecasts and Poll-Based Forecasts to Predict the 2013 German Election. In: German Politics. 2018, 27(1), pp. 25-43. ISSN 0964-4008. eISSN 1743-8993. Available under: doi: 10.1080/09644008.2017.1280781
BibTex
@article{Kuntzler2018-01-02Using-42069,
  year={2018},
  doi={10.1080/09644008.2017.1280781},
  title={Using Data Combination of Fundamental Variable-Based Forecasts and Poll-Based Forecasts to Predict the 2013 German Election},
  number={1},
  volume={27},
  issn={0964-4008},
  journal={German Politics},
  pages={25--43},
  author={Küntzler, Theresa}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42069">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:contributor>Küntzler, Theresa</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-18T06:53:34Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dcterms:title>Using Data Combination of Fundamental Variable-Based Forecasts and Poll-Based Forecasts to Predict the 2013 German Election</dcterms:title>
    <dcterms:abstract xml:lang="eng">In this paper I present an election forecasting approach to predict the vote share of the governing coalition in German national elections. The model is composed of two independent prediction components: the first is based on poll data, the second on fundamental variables. Both approaches have their advantages and disadvantages when used in isolation. The basic idea is to use both and find a better informed overall forecast. The predictions are combined using a shrinkage estimator, where the predictions are weighted by their respective prediction uncertainty. The uncertainty of the poll prediction is modelled time-dependent. The result is a dynamic model allowing for predictions longer before the elections highly relying on fundamental variables. With the elections coming closer predictions rely more and more on the polling data.</dcterms:abstract>
    <dc:creator>Küntzler, Theresa</dc:creator>
    <dcterms:issued>2018-01-02</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42069"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-18T06:53:34Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen