Publikation:

Using Data Combination of Fundamental Variable-Based Forecasts and Poll-Based Forecasts to Predict the 2013 German Election

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

German Politics. 2018, 27(1), pp. 25-43. ISSN 0964-4008. eISSN 1743-8993. Available under: doi: 10.1080/09644008.2017.1280781

Zusammenfassung

In this paper I present an election forecasting approach to predict the vote share of the governing coalition in German national elections. The model is composed of two independent prediction components: the first is based on poll data, the second on fundamental variables. Both approaches have their advantages and disadvantages when used in isolation. The basic idea is to use both and find a better informed overall forecast. The predictions are combined using a shrinkage estimator, where the predictions are weighted by their respective prediction uncertainty. The uncertainty of the poll prediction is modelled time-dependent. The result is a dynamic model allowing for predictions longer before the elections highly relying on fundamental variables. With the elections coming closer predictions rely more and more on the polling data.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KÜNTZLER, Theresa, 2018. Using Data Combination of Fundamental Variable-Based Forecasts and Poll-Based Forecasts to Predict the 2013 German Election. In: German Politics. 2018, 27(1), pp. 25-43. ISSN 0964-4008. eISSN 1743-8993. Available under: doi: 10.1080/09644008.2017.1280781
BibTex
@article{Kuntzler2018-01-02Using-42069,
  year={2018},
  doi={10.1080/09644008.2017.1280781},
  title={Using Data Combination of Fundamental Variable-Based Forecasts and Poll-Based Forecasts to Predict the 2013 German Election},
  number={1},
  volume={27},
  issn={0964-4008},
  journal={German Politics},
  pages={25--43},
  author={Küntzler, Theresa}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42069">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:contributor>Küntzler, Theresa</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-18T06:53:34Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dcterms:title>Using Data Combination of Fundamental Variable-Based Forecasts and Poll-Based Forecasts to Predict the 2013 German Election</dcterms:title>
    <dcterms:abstract xml:lang="eng">In this paper I present an election forecasting approach to predict the vote share of the governing coalition in German national elections. The model is composed of two independent prediction components: the first is based on poll data, the second on fundamental variables. Both approaches have their advantages and disadvantages when used in isolation. The basic idea is to use both and find a better informed overall forecast. The predictions are combined using a shrinkage estimator, where the predictions are weighted by their respective prediction uncertainty. The uncertainty of the poll prediction is modelled time-dependent. The result is a dynamic model allowing for predictions longer before the elections highly relying on fundamental variables. With the elections coming closer predictions rely more and more on the polling data.</dcterms:abstract>
    <dc:creator>Küntzler, Theresa</dc:creator>
    <dcterms:issued>2018-01-02</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42069"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-18T06:53:34Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen