Using Data Combination of Fundamental Variable-Based Forecasts and Poll-Based Forecasts to Predict the 2013 German Election
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper I present an election forecasting approach to predict the vote share of the governing coalition in German national elections. The model is composed of two independent prediction components: the first is based on poll data, the second on fundamental variables. Both approaches have their advantages and disadvantages when used in isolation. The basic idea is to use both and find a better informed overall forecast. The predictions are combined using a shrinkage estimator, where the predictions are weighted by their respective prediction uncertainty. The uncertainty of the poll prediction is modelled time-dependent. The result is a dynamic model allowing for predictions longer before the elections highly relying on fundamental variables. With the elections coming closer predictions rely more and more on the polling data.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KÜNTZLER, Theresa, 2018. Using Data Combination of Fundamental Variable-Based Forecasts and Poll-Based Forecasts to Predict the 2013 German Election. In: German Politics. 2018, 27(1), pp. 25-43. ISSN 0964-4008. eISSN 1743-8993. Available under: doi: 10.1080/09644008.2017.1280781BibTex
@article{Kuntzler2018-01-02Using-42069, year={2018}, doi={10.1080/09644008.2017.1280781}, title={Using Data Combination of Fundamental Variable-Based Forecasts and Poll-Based Forecasts to Predict the 2013 German Election}, number={1}, volume={27}, issn={0964-4008}, journal={German Politics}, pages={25--43}, author={Küntzler, Theresa} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42069"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:contributor>Küntzler, Theresa</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-18T06:53:34Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dcterms:title>Using Data Combination of Fundamental Variable-Based Forecasts and Poll-Based Forecasts to Predict the 2013 German Election</dcterms:title> <dcterms:abstract xml:lang="eng">In this paper I present an election forecasting approach to predict the vote share of the governing coalition in German national elections. The model is composed of two independent prediction components: the first is based on poll data, the second on fundamental variables. Both approaches have their advantages and disadvantages when used in isolation. The basic idea is to use both and find a better informed overall forecast. The predictions are combined using a shrinkage estimator, where the predictions are weighted by their respective prediction uncertainty. The uncertainty of the poll prediction is modelled time-dependent. The result is a dynamic model allowing for predictions longer before the elections highly relying on fundamental variables. With the elections coming closer predictions rely more and more on the polling data.</dcterms:abstract> <dc:creator>Küntzler, Theresa</dc:creator> <dcterms:issued>2018-01-02</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42069"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-18T06:53:34Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>