Publikation:

EncoderMap : Dimensionality Reduction and Generation of Molecule Conformations

Lade...
Vorschaubild

Dateien

Lemke_2-rtg43eew46d96.pdf
Lemke_2-rtg43eew46d96.pdfGröße: 840.5 KBDownloads: 387

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Chemical Theory and Computation (JCTC). 2019, 15(2), pp. 1209-1215. ISSN 1549-9618. eISSN 1549-9626. Available under: doi: 10.1021/acs.jctc.8b00975

Zusammenfassung

Molecular simulation is one example where large amounts of high-dimensional (high-d) data are generated. To extract useful information e.g. about relevant states and important conformational transitions, a form of dimensionality reduction is required. Dimensionality reduction algorithms differ in their ability to efficiently project large amounts of data to an informative low-dimensional (low-d) representation and the way the low and high-d representations are linked. We propose a dimensionality reduction algorithm called encoder-map which is based on a neural network autoencoder in combination with a non-linear distance metric. A key advantage of this method is that it establishes a functional link from the high-d to the low-d representation and vice versa. This allows not only to efficiently project data points to the low-d representation but also to generate high-d representatives for any point in the low-d map. The potential of the algorithm is demonstrated for molecular simulation data of a small, highly-flexible peptide as well as for folding simulations of the 20-residue Trp-cage protein. We demonstrate that the algorithm is able to efficiently project the ensemble of high-d structures to a low-d map where major states can be identified and important conformational transitions are revealed. We also show that molecular conformations can be generated for any point or any connecting line between points on the low-d map. This ability of inverse mapping from the low-d to the high-d representation is particularly relevant for the use in algorithms that enhance the exploration of conformational space or the sampling of transitions between conformational states.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
540 Chemie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690LEMKE, Tobias, Christine PETER, 2019. EncoderMap : Dimensionality Reduction and Generation of Molecule Conformations. In: Journal of Chemical Theory and Computation (JCTC). 2019, 15(2), pp. 1209-1215. ISSN 1549-9618. eISSN 1549-9626. Available under: doi: 10.1021/acs.jctc.8b00975
BibTex
@article{Lemke2019-02-12Encod-44618,
  year={2019},
  doi={10.1021/acs.jctc.8b00975},
  title={EncoderMap : Dimensionality Reduction and Generation of Molecule Conformations},
  number={2},
  volume={15},
  issn={1549-9618},
  journal={Journal of Chemical Theory and Computation (JCTC)},
  pages={1209--1215},
  author={Lemke, Tobias and Peter, Christine}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44618">
    <dc:creator>Lemke, Tobias</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44618/1/Lemke_2-rtg43eew46d96.pdf"/>
    <dcterms:issued>2019-02-12</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-18T12:25:23Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44618/1/Lemke_2-rtg43eew46d96.pdf"/>
    <dc:contributor>Peter, Christine</dc:contributor>
    <dc:creator>Peter, Christine</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-18T12:25:23Z</dc:date>
    <dc:contributor>Lemke, Tobias</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44618"/>
    <dcterms:title>EncoderMap : Dimensionality Reduction and Generation of Molecule Conformations</dcterms:title>
    <dcterms:abstract xml:lang="eng">Molecular simulation is one example where large amounts of high-dimensional (high-d) data are generated. To extract useful information e.g. about relevant states and important conformational transitions, a form of dimensionality reduction is required. Dimensionality reduction algorithms differ in their ability to efficiently project large amounts of data to an informative low-dimensional (low-d) representation and the way the low and high-d representations are linked. We propose a dimensionality reduction algorithm called encoder-map which is based on a neural network autoencoder in combination with a non-linear distance metric. A key advantage of this method is that it establishes a functional link from the high-d to the low-d representation and vice versa. This allows not only to efficiently project data points to the low-d representation but also to generate high-d representatives for any point in the low-d map. The potential of the algorithm is demonstrated for molecular simulation data of a small, highly-flexible peptide as well as for folding simulations of the 20-residue Trp-cage protein. We demonstrate that the algorithm is able to efficiently project the ensemble of high-d structures to a low-d map where major states can be identified and important conformational transitions are revealed. We also show that molecular conformations can be generated for any point or any connecting line between points on the low-d map. This ability of inverse mapping from the low-d to the high-d representation is particularly relevant for the use in algorithms that enhance the exploration of conformational space or the sampling of transitions between conformational states.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen