Visual Analytics of Large Multi-Dimensional Data Using Variable Binned Scatter Plots
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The scatter plot is a well-known method of visualizing pairs of two-dimensional continuous variables. Multidimensional data can be depicted in a scatter plot matrix. They are intuitive and easy-to-use, but often have a high degree of overlap which may occlude a significant portion of data. In this paper, we propose variable binned scatter plots to allow the visualization of large amounts of data without overlapping. The basic idea is to use a non-uniform (variable) binning of the x and y dimensions and plots all the data points that fall within each bin into corresponding squares. Further, we map a third attribute to color for visualizing clusters. Analysts are able to interact with individual data points for record level information. We have applied these techniques to solve real-world problems on credit card fraud and data center energy consumption to visualize their data distribution and cause-effect among multiple attributes. A comparison of our methods with two recent well-known variants of scatter plots is included.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HAO, Ming C., Umeshwar DAYAL, Ratnesh K. SHARMA, Daniel A. KEIM, Halldor JANETZKO, 2010. Visual Analytics of Large Multi-Dimensional Data Using Variable Binned Scatter Plots. IS&T/SPIE Electronic Imaging. San Jose, California. In: PARK, Jinah, ed., Ming C. HAO, ed., Pak C. WONG, ed., Chaomei CHEN, ed.. Visualization and Data Analysis 2010. SPIE, 2010, 06. SPIE Proceedings. 7530. Available under: doi: 10.1117/12.840142BibTex
@inproceedings{Hao2010-01-17Visua-6310, year={2010}, doi={10.1117/12.840142}, title={Visual Analytics of Large Multi-Dimensional Data Using Variable Binned Scatter Plots}, number={7530}, publisher={SPIE}, series={SPIE Proceedings}, booktitle={Visualization and Data Analysis 2010}, editor={Park, Jinah and Hao, Ming C. and Wong, Pak C. and Chen, Chaomei}, author={Hao, Ming C. and Dayal, Umeshwar and Sharma, Ratnesh K. and Keim, Daniel A. and Janetzko, Halldor}, note={Article Number: 06} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6310"> <dcterms:abstract xml:lang="eng">The scatter plot is a well-known method of visualizing pairs of two-dimensional continuous variables. Multidimensional data can be depicted in a scatter plot matrix. They are intuitive and easy-to-use, but often have a high degree of overlap which may occlude a significant portion of data. In this paper, we propose variable binned scatter plots to allow the visualization of large amounts of data without overlapping. The basic idea is to use a non-uniform (variable) binning of the x and y dimensions and plots all the data points that fall within each bin into corresponding squares. Further, we map a third attribute to color for visualizing clusters. Analysts are able to interact with individual data points for record level information. We have applied these techniques to solve real-world problems on credit card fraud and data center energy consumption to visualize their data distribution and cause-effect among multiple attributes. A comparison of our methods with two recent well-known variants of scatter plots is included.</dcterms:abstract> <dc:creator>Janetzko, Halldor</dc:creator> <dc:creator>Dayal, Umeshwar</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Hao, Ming C.</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:11:22Z</dcterms:available> <dcterms:title>Visual Analytics of Large Multi-Dimensional Data Using Variable Binned Scatter Plots</dcterms:title> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6310/1/12456.pdf"/> <dc:contributor>Sharma, Ratnesh K.</dc:contributor> <dc:contributor>Dayal, Umeshwar</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:format>application/pdf</dc:format> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6310"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:11:22Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6310/1/12456.pdf"/> <dcterms:bibliographicCitation>Also publ. in: Visualization and data analysis 2010 : 18 - 19 January 2010, San Jose, California, United States ; proceedings IS&T/SPIE electronic imaging, science and technology / Jinah Park ... (Ed.). - Bellingham, Wash. : SPIE [u.a.], 2010. - Artikel 06. - ISBN 978-0-8194-7923-5</dcterms:bibliographicCitation> <dc:contributor>Janetzko, Halldor</dc:contributor> <dc:creator>Sharma, Ratnesh K.</dc:creator> <dc:creator>Hao, Ming C.</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2010-01-17</dcterms:issued> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>