Visual Analytics of Large Multi-Dimensional Data Using Variable Binned Scatter Plots

Lade...
Vorschaubild
Dateien
12456.pdf
12456.pdfGröße: 1.29 MBDownloads: 633
Datum
2010
Autor:innen
Hao, Ming C.
Dayal, Umeshwar
Sharma, Ratnesh K.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
PARK, Jinah, ed., Ming C. HAO, ed., Pak C. WONG, ed., Chaomei CHEN, ed.. Visualization and Data Analysis 2010. SPIE, 2010, 06. SPIE Proceedings. 7530. Available under: doi: 10.1117/12.840142
Zusammenfassung

The scatter plot is a well-known method of visualizing pairs of two-dimensional continuous variables. Multidimensional data can be depicted in a scatter plot matrix. They are intuitive and easy-to-use, but often have a high degree of overlap which may occlude a significant portion of data. In this paper, we propose variable binned scatter plots to allow the visualization of large amounts of data without overlapping. The basic idea is to use a non-uniform (variable) binning of the x and y dimensions and plots all the data points that fall within each bin into corresponding squares. Further, we map a third attribute to color for visualizing clusters. Analysts are able to interact with individual data points for record level information. We have applied these techniques to solve real-world problems on credit card fraud and data center energy consumption to visualize their data distribution and cause-effect among multiple attributes. A comparison of our methods with two recent well-known variants of scatter plots is included.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Variable Binned, Scatter plots, Correlations, Clusters, Cause-Effect, Data Distribution
Konferenz
IS&T/SPIE Electronic Imaging, San Jose, California
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690HAO, Ming C., Umeshwar DAYAL, Ratnesh K. SHARMA, Daniel A. KEIM, Halldor JANETZKO, 2010. Visual Analytics of Large Multi-Dimensional Data Using Variable Binned Scatter Plots. IS&T/SPIE Electronic Imaging. San Jose, California. In: PARK, Jinah, ed., Ming C. HAO, ed., Pak C. WONG, ed., Chaomei CHEN, ed.. Visualization and Data Analysis 2010. SPIE, 2010, 06. SPIE Proceedings. 7530. Available under: doi: 10.1117/12.840142
BibTex
@inproceedings{Hao2010-01-17Visua-6310,
  year={2010},
  doi={10.1117/12.840142},
  title={Visual Analytics of Large Multi-Dimensional Data Using Variable Binned Scatter Plots},
  number={7530},
  publisher={SPIE},
  series={SPIE Proceedings},
  booktitle={Visualization and Data Analysis 2010},
  editor={Park, Jinah and Hao, Ming C. and Wong, Pak C. and Chen, Chaomei},
  author={Hao, Ming C. and Dayal, Umeshwar and Sharma, Ratnesh K. and Keim, Daniel A. and Janetzko, Halldor},
  note={Article Number: 06}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6310">
    <dcterms:abstract xml:lang="eng">The scatter plot is a well-known method of visualizing pairs of two-dimensional continuous variables. Multidimensional data can be depicted in a scatter plot matrix. They are intuitive and easy-to-use, but often have a high degree of overlap which may occlude a significant portion of data. In this paper, we propose variable binned scatter plots to allow the visualization of large amounts of data without overlapping. The basic idea is to use a non-uniform (variable) binning of the x and y dimensions and plots all the data points that fall within each bin into corresponding squares. Further, we map a third attribute to color for visualizing clusters. Analysts are able to interact with individual data points for record level information. We have applied these techniques to solve real-world problems on credit card fraud and data center energy consumption to visualize their data distribution and cause-effect among multiple attributes. A comparison of our methods with two recent well-known variants of scatter plots is included.</dcterms:abstract>
    <dc:creator>Janetzko, Halldor</dc:creator>
    <dc:creator>Dayal, Umeshwar</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Hao, Ming C.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:11:22Z</dcterms:available>
    <dcterms:title>Visual Analytics of Large Multi-Dimensional Data Using Variable Binned Scatter Plots</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6310/1/12456.pdf"/>
    <dc:contributor>Sharma, Ratnesh K.</dc:contributor>
    <dc:contributor>Dayal, Umeshwar</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:format>application/pdf</dc:format>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6310"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:11:22Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6310/1/12456.pdf"/>
    <dcterms:bibliographicCitation>Also publ. in: Visualization and data analysis 2010 : 18 - 19 January 2010, San Jose, California, United States ; proceedings IS&amp;T/SPIE electronic imaging, science and technology / Jinah Park ... (Ed.). - Bellingham, Wash. : SPIE [u.a.], 2010. - Artikel 06. - ISBN 978-0-8194-7923-5</dcterms:bibliographicCitation>
    <dc:contributor>Janetzko, Halldor</dc:contributor>
    <dc:creator>Sharma, Ratnesh K.</dc:creator>
    <dc:creator>Hao, Ming C.</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2010-01-17</dcterms:issued>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen