Publikation:

Visual Analytics of Large Multi-Dimensional Data Using Variable Binned Scatter Plots

Lade...
Vorschaubild

Dateien

12456.pdf
12456.pdfGröße: 1.29 MBDownloads: 661

Datum

2010

Autor:innen

Hao, Ming C.
Dayal, Umeshwar
Sharma, Ratnesh K.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

PARK, Jinah, ed., Ming C. HAO, ed., Pak C. WONG, ed., Chaomei CHEN, ed.. Visualization and Data Analysis 2010. SPIE, 2010, 06. SPIE Proceedings. 7530. Available under: doi: 10.1117/12.840142

Zusammenfassung

The scatter plot is a well-known method of visualizing pairs of two-dimensional continuous variables. Multidimensional data can be depicted in a scatter plot matrix. They are intuitive and easy-to-use, but often have a high degree of overlap which may occlude a significant portion of data. In this paper, we propose variable binned scatter plots to allow the visualization of large amounts of data without overlapping. The basic idea is to use a non-uniform (variable) binning of the x and y dimensions and plots all the data points that fall within each bin into corresponding squares. Further, we map a third attribute to color for visualizing clusters. Analysts are able to interact with individual data points for record level information. We have applied these techniques to solve real-world problems on credit card fraud and data center energy consumption to visualize their data distribution and cause-effect among multiple attributes. A comparison of our methods with two recent well-known variants of scatter plots is included.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Variable Binned, Scatter plots, Correlations, Clusters, Cause-Effect, Data Distribution

Konferenz

IS&T/SPIE Electronic Imaging, San Jose, California
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HAO, Ming C., Umeshwar DAYAL, Ratnesh K. SHARMA, Daniel A. KEIM, Halldor JANETZKO, 2010. Visual Analytics of Large Multi-Dimensional Data Using Variable Binned Scatter Plots. IS&T/SPIE Electronic Imaging. San Jose, California. In: PARK, Jinah, ed., Ming C. HAO, ed., Pak C. WONG, ed., Chaomei CHEN, ed.. Visualization and Data Analysis 2010. SPIE, 2010, 06. SPIE Proceedings. 7530. Available under: doi: 10.1117/12.840142
BibTex
@inproceedings{Hao2010-01-17Visua-6310,
  year={2010},
  doi={10.1117/12.840142},
  title={Visual Analytics of Large Multi-Dimensional Data Using Variable Binned Scatter Plots},
  number={7530},
  publisher={SPIE},
  series={SPIE Proceedings},
  booktitle={Visualization and Data Analysis 2010},
  editor={Park, Jinah and Hao, Ming C. and Wong, Pak C. and Chen, Chaomei},
  author={Hao, Ming C. and Dayal, Umeshwar and Sharma, Ratnesh K. and Keim, Daniel A. and Janetzko, Halldor},
  note={Article Number: 06}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6310">
    <dcterms:abstract xml:lang="eng">The scatter plot is a well-known method of visualizing pairs of two-dimensional continuous variables. Multidimensional data can be depicted in a scatter plot matrix. They are intuitive and easy-to-use, but often have a high degree of overlap which may occlude a significant portion of data. In this paper, we propose variable binned scatter plots to allow the visualization of large amounts of data without overlapping. The basic idea is to use a non-uniform (variable) binning of the x and y dimensions and plots all the data points that fall within each bin into corresponding squares. Further, we map a third attribute to color for visualizing clusters. Analysts are able to interact with individual data points for record level information. We have applied these techniques to solve real-world problems on credit card fraud and data center energy consumption to visualize their data distribution and cause-effect among multiple attributes. A comparison of our methods with two recent well-known variants of scatter plots is included.</dcterms:abstract>
    <dc:creator>Janetzko, Halldor</dc:creator>
    <dc:creator>Dayal, Umeshwar</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Hao, Ming C.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:11:22Z</dcterms:available>
    <dcterms:title>Visual Analytics of Large Multi-Dimensional Data Using Variable Binned Scatter Plots</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6310/1/12456.pdf"/>
    <dc:contributor>Sharma, Ratnesh K.</dc:contributor>
    <dc:contributor>Dayal, Umeshwar</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:format>application/pdf</dc:format>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6310"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:11:22Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6310/1/12456.pdf"/>
    <dcterms:bibliographicCitation>Also publ. in: Visualization and data analysis 2010 : 18 - 19 January 2010, San Jose, California, United States ; proceedings IS&amp;T/SPIE electronic imaging, science and technology / Jinah Park ... (Ed.). - Bellingham, Wash. : SPIE [u.a.], 2010. - Artikel 06. - ISBN 978-0-8194-7923-5</dcterms:bibliographicCitation>
    <dc:contributor>Janetzko, Halldor</dc:contributor>
    <dc:creator>Sharma, Ratnesh K.</dc:creator>
    <dc:creator>Hao, Ming C.</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2010-01-17</dcterms:issued>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen