Uncovering the Early Stages of Magnesium Silicate Hydrate Formation : A Nonclassical Multistep Pathway

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2023
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
ACS Applied Engineering Materials. American Chemical Society (ACS). 2023, 1(1), pp. 696-707. eISSN 2771-9545. Available under: doi: 10.1021/acsaenm.2c00258
Zusammenfassung

Understanding the fundamental physicochemical processes that occur during the hydration of cementitious materials is essential for developing alternative binders that enable the partial substitution of Portland cement (PC), lowering the carbon footprint associated with the cement industry. Magnesium-silicate-hydrate (M-S-H) stands as a potential alternative binder; however, its inferior mechanical properties attributed to its nanostructure, and the high-water demand for curing, hinder the application of MgO-based cement as PC surrogate. A potential strategy to tackle these major drawbacks is based on controlling M-S-H formation from the early stages, building the properties and nanostructure of this binding phase from its basic building units. The present work provides insights into M-S-H nucleation and early growth gathered by combining titration experiments with electrospray ionization mass spectrometry, analytical ultracentrifugation, and transmission electron microscopy. We evidenced a nonclassical multistep pathway where a highly complex mixture of defined hydrated magnesium (sodium)-silicate oligomeric species exists in solution prior nucleation. Our results suggest that these entities aggregate, yielding an ill-defined M-S-H precursor phase (depleted in Mg compared to the final product) which later transforms into a denser M-S-H interconnected network (Mg:Si ratio ca. 1) with a more defined sheet-like structure that still retains its poorly crystalline character. The identification of oligomeric silicates species prior nucleation is of great importance for developing means to regulate M-S-H (and potentially other hydrous silicates) formation by using a bottom-up approach. This work reveals that, during the hydration process of cementitious materials, the stages prior to the formation of hydrated solids cannot be disregarded, as they could open new avenues for engineering the properties of the final materials.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
540 Chemie
Schlagwörter
magnesium-silicate-hydrate, alternative cementitious binder, nonclassical formation, amorphous precursor, titration experiments
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690MARSISKE, Maximilian R., Rebecca KÖSER, Benedikt BÄUMLE, Cristina RUIZ AGUDO, 2023. Uncovering the Early Stages of Magnesium Silicate Hydrate Formation : A Nonclassical Multistep Pathway. In: ACS Applied Engineering Materials. American Chemical Society (ACS). 2023, 1(1), pp. 696-707. eISSN 2771-9545. Available under: doi: 10.1021/acsaenm.2c00258
BibTex
@article{Marsiske2023Uncov-66108,
  year={2023},
  doi={10.1021/acsaenm.2c00258},
  title={Uncovering the Early Stages of Magnesium Silicate Hydrate Formation : A Nonclassical Multistep Pathway},
  number={1},
  volume={1},
  journal={ACS Applied Engineering Materials},
  pages={696--707},
  author={Marsiske, Maximilian R. and Köser, Rebecca and Bäumle, Benedikt and Ruiz Agudo, Cristina}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66108">
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Ruiz Agudo, Cristina</dc:contributor>
    <dc:contributor>Köser, Rebecca</dc:contributor>
    <dcterms:abstract xml:lang="eng">Understanding the fundamental physicochemical processes that occur during the hydration of cementitious materials is essential for developing alternative binders that enable the partial substitution of Portland cement (PC), lowering the carbon footprint associated with the cement industry. Magnesium-silicate-hydrate (M-S-H) stands as a potential alternative binder; however, its inferior mechanical properties attributed to its nanostructure, and the high-water demand for curing, hinder the application of MgO-based cement as PC surrogate. A potential strategy to tackle these major drawbacks is based on controlling M-S-H formation from the early stages, building the properties and nanostructure of this binding phase from its basic building units. The present work provides insights into M-S-H nucleation and early growth gathered by combining titration experiments with electrospray ionization mass spectrometry, analytical ultracentrifugation, and transmission electron microscopy. We evidenced a nonclassical multistep pathway where a highly complex mixture of defined hydrated magnesium (sodium)-silicate oligomeric species exists in solution prior nucleation. Our results suggest that these entities aggregate, yielding an ill-defined M-S-H precursor phase (depleted in Mg compared to the final product) which later transforms into a denser M-S-H interconnected network (Mg:Si ratio ca. 1) with a more defined sheet-like structure that still retains its poorly crystalline character. The identification of oligomeric silicates species prior nucleation is of great importance for developing means to regulate M-S-H (and potentially other hydrous silicates) formation by using a bottom-up approach. This work reveals that, during the hydration process of cementitious materials, the stages prior to the formation of hydrated solids cannot be disregarded, as they could open new avenues for engineering the properties of the final materials.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Marsiske, Maximilian R.</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Uncovering the Early Stages of Magnesium Silicate Hydrate Formation : A Nonclassical Multistep Pathway</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66108"/>
    <dc:creator>Bäumle, Benedikt</dc:creator>
    <dcterms:issued>2023</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-02-17T09:34:43Z</dcterms:available>
    <dc:creator>Köser, Rebecca</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-02-17T09:34:43Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Marsiske, Maximilian R.</dc:contributor>
    <dc:contributor>Bäumle, Benedikt</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Ruiz Agudo, Cristina</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen