Interactive Visualization of Protein RINs using NetworKit in the Cloud
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Network analysis has been applied in diverse application domains. We consider an application from protein dynamics, specifically residue interaction networks (RINs). While numerous RIN visualization tools exist, there are no solutions that are both easily programmable and as fast as optimized network analysis toolkits. In this work, we use NetworKit - an established package for network analysis - to build a cloud-based environment that enables domain scientists to run their visualization and analysis workflows on large compute servers, without requiring extensive programming and/or system administration knowledge. To demonstrate the versatility of this approach, we use it to build a custom Jupyter-based widget for RIN visualization. In contrast to existing RIN visualization approaches, our widget can easily be customized through simple modifications of Python code, while both supporting a comprehensive feature set and providing near real-time speed. Due to its integration into Jupyter notebooks, our widget can easily interact with other popular packages of the Python ecosystem to build custom analysis pipelines (e.g., pipelines that feed RIN data into downstream machine learning tasks).
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ANGRIMAN, Eugenio, Fabian BRANDT-TUMESCHEIT, Leon FRANKE, Alexander VAN DER GRINTEN, Henning MEYERHENKE, 2022. Interactive Visualization of Protein RINs using NetworKit in the Cloud. International Parallel and Distributed Processing Symposium, IPDPSW 2022. Virtual Event, 30. Mai 2022 - 3. Juni 2022. In: BENOIT, Anne, ed. and others. 2022 IEEE 36th International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2022, proceedings. Piscataway, NJ: IEEE, 2022, pp. 255-264. ISBN 978-1-66549-747-3. Available under: doi: 10.1109/IPDPSW55747.2022.00055BibTex
@inproceedings{Angriman2022Inter-59117, year={2022}, doi={10.1109/IPDPSW55747.2022.00055}, title={Interactive Visualization of Protein RINs using NetworKit in the Cloud}, isbn={978-1-66549-747-3}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2022 IEEE 36th International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2022, proceedings}, pages={255--264}, editor={Benoit, Anne}, author={Angriman, Eugenio and Brandt-Tumescheit, Fabian and Franke, Leon and van der Grinten, Alexander and Meyerhenke, Henning} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59117"> <dc:contributor>Angriman, Eugenio</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dcterms:title>Interactive Visualization of Protein RINs using NetworKit in the Cloud</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59117"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-11T08:33:05Z</dc:date> <dc:creator>Angriman, Eugenio</dc:creator> <dc:contributor>Franke, Leon</dc:contributor> <dcterms:abstract xml:lang="eng">Network analysis has been applied in diverse application domains. We consider an application from protein dynamics, specifically residue interaction networks (RINs). While numerous RIN visualization tools exist, there are no solutions that are both easily programmable and as fast as optimized network analysis toolkits. In this work, we use NetworKit - an established package for network analysis - to build a cloud-based environment that enables domain scientists to run their visualization and analysis workflows on large compute servers, without requiring extensive programming and/or system administration knowledge. To demonstrate the versatility of this approach, we use it to build a custom Jupyter-based widget for RIN visualization. In contrast to existing RIN visualization approaches, our widget can easily be customized through simple modifications of Python code, while both supporting a comprehensive feature set and providing near real-time speed. Due to its integration into Jupyter notebooks, our widget can easily interact with other popular packages of the Python ecosystem to build custom analysis pipelines (e.g., pipelines that feed RIN data into downstream machine learning tasks).</dcterms:abstract> <dc:contributor>van der Grinten, Alexander</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:creator>Meyerhenke, Henning</dc:creator> <dc:creator>Brandt-Tumescheit, Fabian</dc:creator> <dcterms:issued>2022</dcterms:issued> <dc:creator>van der Grinten, Alexander</dc:creator> <dc:contributor>Meyerhenke, Henning</dc:contributor> <dc:creator>Franke, Leon</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-11T08:33:05Z</dcterms:available> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Brandt-Tumescheit, Fabian</dc:contributor> </rdf:Description> </rdf:RDF>