Publikation:

Interactive Visualization of Protein RINs using NetworKit in the Cloud

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2022

Autor:innen

Angriman, Eugenio
Brandt-Tumescheit, Fabian
van der Grinten, Alexander
Meyerhenke, Henning

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

BENOIT, Anne, ed. and others. 2022 IEEE 36th International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2022, proceedings. Piscataway, NJ: IEEE, 2022, pp. 255-264. ISBN 978-1-66549-747-3. Available under: doi: 10.1109/IPDPSW55747.2022.00055

Zusammenfassung

Network analysis has been applied in diverse application domains. We consider an application from protein dynamics, specifically residue interaction networks (RINs). While numerous RIN visualization tools exist, there are no solutions that are both easily programmable and as fast as optimized network analysis toolkits. In this work, we use NetworKit - an established package for network analysis - to build a cloud-based environment that enables domain scientists to run their visualization and analysis workflows on large compute servers, without requiring extensive programming and/or system administration knowledge. To demonstrate the versatility of this approach, we use it to build a custom Jupyter-based widget for RIN visualization. In contrast to existing RIN visualization approaches, our widget can easily be customized through simple modifications of Python code, while both supporting a comprehensive feature set and providing near real-time speed. Due to its integration into Jupyter notebooks, our widget can easily interact with other popular packages of the Python ecosystem to build custom analysis pipelines (e.g., pipelines that feed RIN data into downstream machine learning tasks).

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
540 Chemie

Schlagwörter

Konferenz

International Parallel and Distributed Processing Symposium, IPDPSW 2022, 30. Mai 2022 - 3. Juni 2022, Virtual Event
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ANGRIMAN, Eugenio, Fabian BRANDT-TUMESCHEIT, Leon FRANKE, Alexander VAN DER GRINTEN, Henning MEYERHENKE, 2022. Interactive Visualization of Protein RINs using NetworKit in the Cloud. International Parallel and Distributed Processing Symposium, IPDPSW 2022. Virtual Event, 30. Mai 2022 - 3. Juni 2022. In: BENOIT, Anne, ed. and others. 2022 IEEE 36th International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2022, proceedings. Piscataway, NJ: IEEE, 2022, pp. 255-264. ISBN 978-1-66549-747-3. Available under: doi: 10.1109/IPDPSW55747.2022.00055
BibTex
@inproceedings{Angriman2022Inter-59117,
  year={2022},
  doi={10.1109/IPDPSW55747.2022.00055},
  title={Interactive Visualization of Protein RINs using NetworKit in the Cloud},
  isbn={978-1-66549-747-3},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2022 IEEE 36th International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2022, proceedings},
  pages={255--264},
  editor={Benoit, Anne},
  author={Angriman, Eugenio and Brandt-Tumescheit, Fabian and Franke, Leon and van der Grinten, Alexander and Meyerhenke, Henning}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59117">
    <dc:contributor>Angriman, Eugenio</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dcterms:title>Interactive Visualization of Protein RINs using NetworKit in the Cloud</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59117"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-11T08:33:05Z</dc:date>
    <dc:creator>Angriman, Eugenio</dc:creator>
    <dc:contributor>Franke, Leon</dc:contributor>
    <dcterms:abstract xml:lang="eng">Network analysis has been applied in diverse application domains. We consider an application from protein dynamics, specifically residue interaction networks (RINs). While numerous RIN visualization tools exist, there are no solutions that are both easily programmable and as fast as optimized network analysis toolkits. In this work, we use NetworKit - an established package for network analysis - to build a cloud-based environment that enables domain scientists to run their visualization and analysis workflows on large compute servers, without requiring extensive programming and/or system administration knowledge. To demonstrate the versatility of this approach, we use it to build a custom Jupyter-based widget for RIN visualization. In contrast to existing RIN visualization approaches, our widget can easily be customized through simple modifications of Python code, while both supporting a comprehensive feature set and providing near real-time speed. Due to its integration into Jupyter notebooks, our widget can easily interact with other popular packages of the Python ecosystem to build custom analysis pipelines (e.g., pipelines that feed RIN data into downstream machine learning tasks).</dcterms:abstract>
    <dc:contributor>van der Grinten, Alexander</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:creator>Meyerhenke, Henning</dc:creator>
    <dc:creator>Brandt-Tumescheit, Fabian</dc:creator>
    <dcterms:issued>2022</dcterms:issued>
    <dc:creator>van der Grinten, Alexander</dc:creator>
    <dc:contributor>Meyerhenke, Henning</dc:contributor>
    <dc:creator>Franke, Leon</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-11T08:33:05Z</dcterms:available>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Brandt-Tumescheit, Fabian</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen