Publikation:

Random attractors via pathwise mild solutions for stochastic parabolic evolution equations

Lade...
Vorschaubild

Dateien

Kuehn_2-s67e3p6io96l7.pdf
Kuehn_2-s67e3p6io96l7.pdfGröße: 421.77 KBDownloads: 88

Datum

2021

Autor:innen

Kuehn, Christian
Sonner, Stefanie

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Evolution Equations. Springer. 2021, 21(2), pp. 2631-2663. ISSN 1424-3199. eISSN 1424-3202. Available under: doi: 10.1007/s00028-021-00699-x

Zusammenfassung

We investigate the longtime behavior of stochastic partial differential equations (SPDEs) with differential operators that depend on time and the underlying probability space. In particular, we consider stochastic parabolic evolution problems in Banach spaces with additive noise and prove the existence of random exponential attractors. These are compact random sets of finite fractal dimension that contain the global random attractor and are attracting at an exponential rate. In order to apply the framework of random dynamical systems, we use the concept of pathwise mild solutions.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Stochastic parabolic evolution equations, Pathwise mild solution, Random attractors, Fractal dimension

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KUEHN, Christian, Alexandra BLESSING-NEAMTU, Stefanie SONNER, 2021. Random attractors via pathwise mild solutions for stochastic parabolic evolution equations. In: Journal of Evolution Equations. Springer. 2021, 21(2), pp. 2631-2663. ISSN 1424-3199. eISSN 1424-3202. Available under: doi: 10.1007/s00028-021-00699-x
BibTex
@article{Kuehn2021-06Rando-57999,
  year={2021},
  doi={10.1007/s00028-021-00699-x},
  title={Random attractors via pathwise mild solutions for stochastic parabolic evolution equations},
  number={2},
  volume={21},
  issn={1424-3199},
  journal={Journal of Evolution Equations},
  pages={2631--2663},
  author={Kuehn, Christian and Blessing-Neamtu, Alexandra and Sonner, Stefanie}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57999">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-11T10:20:39Z</dcterms:available>
    <dcterms:title>Random attractors via pathwise mild solutions for stochastic parabolic evolution equations</dcterms:title>
    <dc:creator>Sonner, Stefanie</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Kuehn, Christian</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57999/1/Kuehn_2-s67e3p6io96l7.pdf"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">We investigate the longtime behavior of stochastic partial differential equations (SPDEs) with differential operators that depend on time and the underlying probability space. In particular, we consider stochastic parabolic evolution problems in Banach spaces with additive noise and prove the existence of random exponential attractors. These are compact random sets of finite fractal dimension that contain the global random attractor and are attracting at an exponential rate. In order to apply the framework of random dynamical systems, we use the concept of pathwise mild solutions.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57999"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-11T10:20:39Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Blessing-Neamtu, Alexandra</dc:contributor>
    <dcterms:issued>2021-06</dcterms:issued>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57999/1/Kuehn_2-s67e3p6io96l7.pdf"/>
    <dc:contributor>Sonner, Stefanie</dc:contributor>
    <dc:creator>Blessing-Neamtu, Alexandra</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:contributor>Kuehn, Christian</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen