Publikation:

Intrinsic Light Field Decomposition and Disparity Estimation with Deep Encoder-Decoder Network

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

European Union (EU): 336978

Projekt

LIA - Light Field Imaging and Analysis
Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

EUSIPCO 2018 : 26th European Signal Processing Conference. Piscataway, NJ: IEEE, 2018, pp. 2165-2169. ISBN 9789082797015

Zusammenfassung

We present an encoder-decoder deep neural network that solves non-Lambertian intrinsic light field decomposition, where we recover all three intrinsic components: albedo, shading, and specularity. We learn a sparse set of features from 3D epipolar volumes and use them in separate decoder pathways to reconstruct intrinsic light fields. While being trained on synthetic data generated with Blender, our model still generalizes to real world examples captured with a Lytro Illum plenoptic camera. The proposed method outperforms state-of-the-art approaches for single images and achieves competitive accuracy with recent modeling methods for light fields.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Decoding, Estimation, Three-dimensional displays, Convolution, Two dimensional displays, Tensile stress, Cameras

Konferenz

EUSIPCO 2018 : 26th European Signal Processing Conference, 3. Sept. 2018 - 7. Sept. 2018, Rom, Italy
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ALPEROVICH, Anna, Ole JOHANNSEN, Bastian GOLDLÜCKE, 2018. Intrinsic Light Field Decomposition and Disparity Estimation with Deep Encoder-Decoder Network. EUSIPCO 2018 : 26th European Signal Processing Conference. Rom, Italy, 3. Sept. 2018 - 7. Sept. 2018. In: EUSIPCO 2018 : 26th European Signal Processing Conference. Piscataway, NJ: IEEE, 2018, pp. 2165-2169. ISBN 9789082797015
BibTex
@inproceedings{Alperovich2018-09Intri-44782,
  year={2018},
  title={Intrinsic Light Field Decomposition and Disparity Estimation with Deep Encoder-Decoder Network},
  isbn={9789082797015},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={EUSIPCO 2018 :  26th European Signal Processing Conference},
  pages={2165--2169},
  author={Alperovich, Anna and Johannsen, Ole and Goldlücke, Bastian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44782">
    <dc:creator>Johannsen, Ole</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-31T09:04:07Z</dcterms:available>
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Alperovich, Anna</dc:contributor>
    <dc:creator>Alperovich, Anna</dc:creator>
    <dcterms:abstract xml:lang="eng">We present an encoder-decoder deep neural network that solves non-Lambertian intrinsic light field decomposition, where we recover all three intrinsic components: albedo, shading, and specularity. We learn a sparse set of features from 3D epipolar volumes and use them in separate decoder pathways to reconstruct intrinsic light fields. While being trained on synthetic data generated with Blender, our model still generalizes to real world examples captured with a Lytro Illum plenoptic camera. The proposed method outperforms state-of-the-art approaches for single images and achieves competitive accuracy with recent modeling methods for light fields.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-31T09:04:07Z</dc:date>
    <dcterms:title>Intrinsic Light Field Decomposition and Disparity Estimation with Deep Encoder-Decoder Network</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44782"/>
    <dc:contributor>Johannsen, Ole</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
    <dcterms:issued>2018-09</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen