Publikation: Competencies for teaching with and about artificial intelligence in the natural sciences – DiKoLAN AI
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The rapid advancement and widespread adoption of digital technologies have transformed the education sector. Among these developments, the emergence of generative Artificial Intelligence (AI) tools such as ChatGPT has had a considerable impact on teaching and learning practices. While the integration of AI into educational settings is becoming increasingly common, subject-specific analyses, especially in STEM education, are still lacking. This paper examines the specific challenges and potential of AI in the context of STEM education. It does so by exploring how AI has transformed scientific disciplines and how these changes impact teaching and learning. It highlights the necessity for educators to acquire specific competencies to effectively incorporate AI into their instructional practices. Building on existing frameworks such as DigCompEdu and the subject-specific DiKoLAN, the paper proposes an AI-focused framework: DiKoLAN AI. This framework aligns AI-related teacher competencies with instructional practice in science education. It also provides a structure for categorizing existing teacher training programs. The paper outlines the development of the DiKoLAN AI framework and its content consensus validation by a total of 64 experts trough three iterative cycles. Its practical application is demonstrated through 20 case studies from different authors, which offer a practical approach for supporting teacher training and curriculum design in AI-integrated STEM education. The paper concludes with a discussion of opportunities, challenges and future research needs for teacher professionalization.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HUWER, Johannes, Christoph THYSSEN, Sebastian BECKER-GENSCHOW, Lena VON KOTZEBUE, Alexander FINGER, Erik KREMSER, Sandra BERBER, Mathea BRÜCKNER, Nikolai MAURER, Till BRUCKERMANN, Monique MEIER, Lars-Jochen THOMS, 2025. Competencies for teaching with and about artificial intelligence in the natural sciences – DiKoLAN AI. In: Computers and Education Open. Elsevier. 2025, 9, 100303. ISSN 2666-5573. eISSN 2666-5573. Verfügbar unter: doi: 10.1016/j.caeo.2025.100303BibTex
@article{Huwer2025-12Compe-74996,
title={Competencies for teaching with and about artificial intelligence in the natural sciences – DiKoLAN AI},
year={2025},
doi={10.1016/j.caeo.2025.100303},
volume={9},
issn={2666-5573},
journal={Computers and Education Open},
author={Huwer, Johannes and Thyssen, Christoph and Becker-Genschow, Sebastian and von Kotzebue, Lena and Finger, Alexander and Kremser, Erik and Berber, Sandra and Brückner, Mathea and Maurer, Nikolai and Bruckermann, Till and Meier, Monique and Thoms, Lars-Jochen},
note={Article Number: 100303}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/74996">
<dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/74996/1/Huwer_2-sh8i34n3ct6r6.pdf"/>
<dc:language>eng</dc:language>
<dc:creator>Finger, Alexander</dc:creator>
<dc:creator>von Kotzebue, Lena</dc:creator>
<dc:creator>Huwer, Johannes</dc:creator>
<dc:contributor>Maurer, Nikolai</dc:contributor>
<dcterms:title>Competencies for teaching with and about artificial intelligence in the natural sciences – DiKoLAN AI</dcterms:title>
<dcterms:abstract>The rapid advancement and widespread adoption of digital technologies have transformed the education sector. Among these developments, the emergence of generative Artificial Intelligence (AI) tools such as ChatGPT has had a considerable impact on teaching and learning practices. While the integration of AI into educational settings is becoming increasingly common, subject-specific analyses, especially in STEM education, are still lacking. This paper examines the specific challenges and potential of AI in the context of STEM education. It does so by exploring how AI has transformed scientific disciplines and how these changes impact teaching and learning. It highlights the necessity for educators to acquire specific competencies to effectively incorporate AI into their instructional practices. Building on existing frameworks such as DigCompEdu and the subject-specific DiKoLAN, the paper proposes an AI-focused framework: DiKoLAN AI. This framework aligns AI-related teacher competencies with instructional practice in science education. It also provides a structure for categorizing existing teacher training programs. The paper outlines the development of the DiKoLAN AI framework and its content consensus validation by a total of 64 experts trough three iterative cycles. Its practical application is demonstrated through 20 case studies from different authors, which offer a practical approach for supporting teacher training and curriculum design in AI-integrated STEM education. The paper concludes with a discussion of opportunities, challenges and future research needs for teacher professionalization.</dcterms:abstract>
<dc:creator>Thoms, Lars-Jochen</dc:creator>
<dc:contributor>Bruckermann, Till</dc:contributor>
<dc:contributor>Finger, Alexander</dc:contributor>
<dc:creator>Kremser, Erik</dc:creator>
<dcterms:issued>2025-12</dcterms:issued>
<dc:contributor>Brückner, Mathea</dc:contributor>
<bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/74996"/>
<dc:creator>Brückner, Mathea</dc:creator>
<dc:contributor>von Kotzebue, Lena</dc:contributor>
<dc:contributor>Thyssen, Christoph</dc:contributor>
<dc:contributor>Berber, Sandra</dc:contributor>
<dc:creator>Maurer, Nikolai</dc:creator>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
<dc:contributor>Becker-Genschow, Sebastian</dc:contributor>
<dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/74996/1/Huwer_2-sh8i34n3ct6r6.pdf"/>
<dc:creator>Meier, Monique</dc:creator>
<dc:contributor>Kremser, Erik</dc:contributor>
<dc:creator>Becker-Genschow, Sebastian</dc:creator>
<dc:creator>Thyssen, Christoph</dc:creator>
<dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-10-28T13:38:37Z</dc:date>
<dc:contributor>Meier, Monique</dc:contributor>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
<dc:creator>Berber, Sandra</dc:creator>
<dc:rights>Attribution 4.0 International</dc:rights>
<dc:contributor>Thoms, Lars-Jochen</dc:contributor>
<dc:creator>Bruckermann, Till</dc:creator>
<dc:contributor>Huwer, Johannes</dc:contributor>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-10-28T13:38:37Z</dcterms:available>
</rdf:Description>
</rdf:RDF>