Publikation: Quantum Optimal Control Problems with a Sparsity Cost Functional
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2016
Autor:innen
Borzì, Alfio
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Numerical Functional Analysis and Optimization. 2016, 37(8), pp. 938-965. ISSN 0163-0563. eISSN 1532-2467. Available under: doi: 10.1080/01630563.2016.1184166
Zusammenfassung
In this article, the investigation of a class of quantum optimal control problems with L1 sparsity cost functionals is presented. The focus is on quantum systems modeled by Schrödinger-type equations with a bilinear control structure as it appears in many applications in nuclear magnetic resonance spectroscopy, quantum imaging, quantum computing, and in chemical and photochemical processes. In these problems, the choice of L1 control spaces promotes sparse optimal control functions that are conveniently produced by laboratory pulse shapers. The characterization of L1 quantum optimal controls and an efficient numerical semi-smooth Newton solution procedure are discussed.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Nonsmooth optimization, optimal control theory, quantum control problems, semi-smooth Newton method
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
CIARAMELLA, Gabriele, Alfio BORZÌ, 2016. Quantum Optimal Control Problems with a Sparsity Cost Functional. In: Numerical Functional Analysis and Optimization. 2016, 37(8), pp. 938-965. ISSN 0163-0563. eISSN 1532-2467. Available under: doi: 10.1080/01630563.2016.1184166BibTex
@article{Ciaramella2016-08-02Quant-41205, year={2016}, doi={10.1080/01630563.2016.1184166}, title={Quantum Optimal Control Problems with a Sparsity Cost Functional}, number={8}, volume={37}, issn={0163-0563}, journal={Numerical Functional Analysis and Optimization}, pages={938--965}, author={Ciaramella, Gabriele and Borzì, Alfio} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41205"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Borzì, Alfio</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Borzì, Alfio</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Ciaramella, Gabriele</dc:creator> <dcterms:title>Quantum Optimal Control Problems with a Sparsity Cost Functional</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-02T10:31:47Z</dc:date> <dc:language>eng</dc:language> <dc:contributor>Ciaramella, Gabriele</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41205"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-02T10:31:47Z</dcterms:available> <dcterms:abstract xml:lang="eng">In this article, the investigation of a class of quantum optimal control problems with L1 sparsity cost functionals is presented. The focus is on quantum systems modeled by Schrödinger-type equations with a bilinear control structure as it appears in many applications in nuclear magnetic resonance spectroscopy, quantum imaging, quantum computing, and in chemical and photochemical processes. In these problems, the choice of L1 control spaces promotes sparse optimal control functions that are conveniently produced by laboratory pulse shapers. The characterization of L<sup>1</sup> quantum optimal controls and an efficient numerical semi-smooth Newton solution procedure are discussed.</dcterms:abstract> <dcterms:issued>2016-08-02</dcterms:issued> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein