Supporting Data Mining of Large Databases by Visual Feedback Queries
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper, we describe a query system that provides visual relevance feedback in querying large databases. Our goal is to support the process of data mining by representing as many data items as possible on the display. By arranging and coloring the data items as pixels according to their relevance for the query, the user gets a visual impression of the resulting data set. Using an interactive query interface, the user may change the query dynamically and receives immediate feedback by the visual representation of the resulting data set. Furthermore, by using multiple windows for different parts of a complex query, the user gets visual feedback for each part of the query and, therefore, may easier understand the overall result. Our system allows to represent the largest amount of data that can be visualized on current display technology, provides valuable feedback in querying the database, and allows the user to find results which, otherwise, would remain hidden in the database.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KEIM, Daniel A., Hans-Peter KRIEGEL, Thomas SEIDL, 1994. Supporting Data Mining of Large Databases by Visual Feedback Queries. 1994 IEEE 10th International Conference on Data Engineering. Houston, TX, USA. In: Proceedings of 1994 IEEE 10th International Conference on Data Engineering. IEEE, 1994, pp. 302-313. ISBN 0-8186-5402-3. Available under: doi: 10.1109/ICDE.1994.283045BibTex
@inproceedings{Keim1994Suppo-5858, year={1994}, doi={10.1109/ICDE.1994.283045}, title={Supporting Data Mining of Large Databases by Visual Feedback Queries}, isbn={0-8186-5402-3}, publisher={IEEE}, booktitle={Proceedings of 1994 IEEE 10th International Conference on Data Engineering}, pages={302--313}, author={Keim, Daniel A. and Kriegel, Hans-Peter and Seidl, Thomas} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5858"> <dc:creator>Seidl, Thomas</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Kriegel, Hans-Peter</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:00:43Z</dcterms:available> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:issued>1994</dcterms:issued> <dc:format>application/pdf</dc:format> <dc:creator>Kriegel, Hans-Peter</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5858/1/Supporting_Data_Mining_of_Large_Databases_by_Visual_Feedback_Queries.pdf"/> <dc:contributor>Seidl, Thomas</dc:contributor> <dcterms:bibliographicCitation>First publ. in: Proceedings / Tenth International Conference on Data Engineering, February 14 - 18, 1994, Houston, Tex. pp. 302-313</dcterms:bibliographicCitation> <dcterms:abstract xml:lang="eng">In this paper, we describe a query system that provides visual relevance feedback in querying large databases. Our goal is to support the process of data mining by representing as many data items as possible on the display. By arranging and coloring the data items as pixels according to their relevance for the query, the user gets a visual impression of the resulting data set. Using an interactive query interface, the user may change the query dynamically and receives immediate feedback by the visual representation of the resulting data set. Furthermore, by using multiple windows for different parts of a complex query, the user gets visual feedback for each part of the query and, therefore, may easier understand the overall result. Our system allows to represent the largest amount of data that can be visualized on current display technology, provides valuable feedback in querying the database, and allows the user to find results which, otherwise, would remain hidden in the database.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5858"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:00:43Z</dc:date> <dcterms:title>Supporting Data Mining of Large Databases by Visual Feedback Queries</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5858/1/Supporting_Data_Mining_of_Large_Databases_by_Visual_Feedback_Queries.pdf"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>