Publikation:

Boundary value problems for a class of elliptic operator pencils

Lade...
Vorschaubild

Datum

2000

Autor:innen

Mennicken, Reinhard
Volevič, Leonid R.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Integral Equations Operator Theory. 2000, 38, pp. 410-436. Available under: doi: 10.1007/BF01228606

Zusammenfassung

An operator family of densely defined closed linear operators and the In this paper operator pencils depending polynomially on the spectral parameter are studied which act on a manifold with boundary and satisfy the condition of N -ellipticity with parameter, a generalization of the notion of ellipticity with parameter as introduced by Agmon and Agranovich-Vishik. Sobolev spaces corresponding to a Newton polygon are defined and investigated; in particular it is possible to describe their trace spaces. With respect to these spaces, an a priori estimate holds for the Dirichlet boundary value problem connected with an N-elliptic pencil, and a right parametrix is constructed.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690DENK, Robert, Reinhard MENNICKEN, Leonid R. VOLEVIČ, 2000. Boundary value problems for a class of elliptic operator pencils. In: Integral Equations Operator Theory. 2000, 38, pp. 410-436. Available under: doi: 10.1007/BF01228606
BibTex
@article{Denk2000Bound-704,
  year={2000},
  doi={10.1007/BF01228606},
  title={Boundary value problems for a class of elliptic operator pencils},
  volume={38},
  journal={Integral Equations Operator Theory},
  pages={410--436},
  author={Denk, Robert and Mennicken, Reinhard and Volevič, Leonid R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/704">
    <dc:language>eng</dc:language>
    <dc:contributor>Volevič, Leonid R.</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/704/1/Boundary_value_problems_for_a_class_of_elliptic_operator_pencils.pdf"/>
    <dc:contributor>Denk, Robert</dc:contributor>
    <dc:creator>Denk, Robert</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/704"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:34Z</dc:date>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/704/1/Boundary_value_problems_for_a_class_of_elliptic_operator_pencils.pdf"/>
    <dc:creator>Volevič, Leonid R.</dc:creator>
    <dc:contributor>Mennicken, Reinhard</dc:contributor>
    <dc:format>application/pdf</dc:format>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dcterms:issued>2000</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:34Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Boundary value problems for a class of elliptic operator pencils</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">An operator family of densely defined closed linear operators and the In this paper operator pencils depending polynomially on the spectral parameter  are studied which act on a manifold with boundary and satisfy the condition of  N -ellipticity with parameter, a generalization of the notion of ellipticity with parameter as introduced by Agmon and Agranovich-Vishik. Sobolev spaces corresponding to a Newton polygon are defined and investigated; in particular it is possible to describe  their trace spaces. With respect to these spaces, an a priori estimate  holds for the Dirichlet boundary value problem connected with an N-elliptic pencil, and a right parametrix is constructed.</dcterms:abstract>
    <dcterms:bibliographicCitation>First publ. in: Integral Equations Operator Theory 38 (2000), pp. 410-436</dcterms:bibliographicCitation>
    <dc:creator>Mennicken, Reinhard</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen