Publikation: Boundary value problems for a class of elliptic operator pencils
Lade...
Dateien
Datum
2000
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Integral Equations Operator Theory. 2000, 38, pp. 410-436. Available under: doi: 10.1007/BF01228606
Zusammenfassung
An operator family of densely defined closed linear operators and the In this paper operator pencils depending polynomially on the spectral parameter are studied which act on a manifold with boundary and satisfy the condition of N -ellipticity with parameter, a generalization of the notion of ellipticity with parameter as introduced by Agmon and Agranovich-Vishik. Sobolev spaces corresponding to a Newton polygon are defined and investigated; in particular it is possible to describe their trace spaces. With respect to these spaces, an a priori estimate holds for the Dirichlet boundary value problem connected with an N-elliptic pencil, and a right parametrix is constructed.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
DENK, Robert, Reinhard MENNICKEN, Leonid R. VOLEVIČ, 2000. Boundary value problems for a class of elliptic operator pencils. In: Integral Equations Operator Theory. 2000, 38, pp. 410-436. Available under: doi: 10.1007/BF01228606BibTex
@article{Denk2000Bound-704,
year={2000},
doi={10.1007/BF01228606},
title={Boundary value problems for a class of elliptic operator pencils},
volume={38},
journal={Integral Equations Operator Theory},
pages={410--436},
author={Denk, Robert and Mennicken, Reinhard and Volevič, Leonid R.}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/704">
<dc:language>eng</dc:language>
<dc:contributor>Volevič, Leonid R.</dc:contributor>
<dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/704/1/Boundary_value_problems_for_a_class_of_elliptic_operator_pencils.pdf"/>
<dc:contributor>Denk, Robert</dc:contributor>
<dc:creator>Denk, Robert</dc:creator>
<bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/704"/>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:34Z</dc:date>
<dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
<dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/704/1/Boundary_value_problems_for_a_class_of_elliptic_operator_pencils.pdf"/>
<dc:creator>Volevič, Leonid R.</dc:creator>
<dc:contributor>Mennicken, Reinhard</dc:contributor>
<dc:format>application/pdf</dc:format>
<dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
<dcterms:issued>2000</dcterms:issued>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:34Z</dcterms:available>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dcterms:title>Boundary value problems for a class of elliptic operator pencils</dcterms:title>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<dcterms:abstract xml:lang="eng">An operator family of densely defined closed linear operators and the In this paper operator pencils depending polynomially on the spectral parameter are studied which act on a manifold with boundary and satisfy the condition of N -ellipticity with parameter, a generalization of the notion of ellipticity with parameter as introduced by Agmon and Agranovich-Vishik. Sobolev spaces corresponding to a Newton polygon are defined and investigated; in particular it is possible to describe their trace spaces. With respect to these spaces, an a priori estimate holds for the Dirichlet boundary value problem connected with an N-elliptic pencil, and a right parametrix is constructed.</dcterms:abstract>
<dcterms:bibliographicCitation>First publ. in: Integral Equations Operator Theory 38 (2000), pp. 410-436</dcterms:bibliographicCitation>
<dc:creator>Mennicken, Reinhard</dc:creator>
</rdf:Description>
</rdf:RDF>Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
