Terms in Time and Times in Context : A Graph-based Term-Time Ranking Model

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2015
Autor:innen
Strötgen, Jannik
Bögel, Thomas
Gertz, Michael
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
GANGEMI, Aldo, ed., Stefano LEONARDI, ed., Alessandro PANCONESI, ed.. WWW '15 Companion : Proceedings of the 24th International Conference on World Wide Web. New York, NY: ACM, 2015, pp. 1375-1380. ISBN 978-1-4503-3473-0. Available under: doi: 10.1145/2740908.2741693
Zusammenfassung

Approaches in support of the extraction and exploration of temporal information in documents provide an important ingredient in many of today's frameworks for text analysis. Methods range from basic techniques, primarily the extraction of temporal expressions and events from documents, to more sophisticated approaches such as ranking of documents with respect to their temporal relevance to some query term or the construction of timelines. Almost all of these approaches operate on the document level, that is, for a collection of documents a timeline is extracted or a ranked list of documents is returned for a temporal query term. In this paper, we present an approach to characterize individual dates, which can be of different granularities, and terms. Given a query date, a ranked list of terms is determined that are highly relevant for that date and best summarize the date. Analogously, for a query term, a ranked list of dates is determined that best characterize the term. Focusing on just dates and single terms as they occur in documents provides a fine-grained query and exploration method for document collections. Our approach is based on a weighted bipartite graph representing the co-occurrences of time expressions and terms in a collection of documents. We present different measures to obtain a ranked list of dates and terms for a query term and date, respectively. Our experiments and evaluation using Wikipedia as a document collection show that our approach provides an effective means in support of date and temporal term summarization.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Temporal information, time-based analysis, ranking
Konferenz
WWW '15 : 24th International Conference on World Wide Web, 18. Mai 2015 - 22. Mai 2015, Florence, Italy
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690SPITZ, Andreas, Jannik STRÖTGEN, Thomas BÖGEL, Michael GERTZ, 2015. Terms in Time and Times in Context : A Graph-based Term-Time Ranking Model. WWW '15 : 24th International Conference on World Wide Web. Florence, Italy, 18. Mai 2015 - 22. Mai 2015. In: GANGEMI, Aldo, ed., Stefano LEONARDI, ed., Alessandro PANCONESI, ed.. WWW '15 Companion : Proceedings of the 24th International Conference on World Wide Web. New York, NY: ACM, 2015, pp. 1375-1380. ISBN 978-1-4503-3473-0. Available under: doi: 10.1145/2740908.2741693
BibTex
@inproceedings{Spitz2015Terms-55889,
  year={2015},
  doi={10.1145/2740908.2741693},
  title={Terms in Time and Times in Context : A Graph-based Term-Time Ranking Model},
  isbn={978-1-4503-3473-0},
  publisher={ACM},
  address={New York, NY},
  booktitle={WWW '15 Companion : Proceedings of the 24th International Conference on World Wide Web},
  pages={1375--1380},
  editor={Gangemi, Aldo and Leonardi, Stefano and Panconesi, Alessandro},
  author={Spitz, Andreas and Strötgen, Jannik and Bögel, Thomas and Gertz, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55889">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Strötgen, Jannik</dc:creator>
    <dc:creator>Bögel, Thomas</dc:creator>
    <dc:contributor>Strötgen, Jannik</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-14T13:26:01Z</dc:date>
    <dcterms:abstract xml:lang="eng">Approaches in support of the extraction and exploration of temporal information in documents provide an important ingredient in many of today's frameworks for text analysis. Methods range from basic techniques, primarily the extraction of temporal expressions and events from documents, to more sophisticated approaches such as ranking of documents with respect to their temporal relevance to some query term or the construction of timelines. Almost all of these approaches operate on the document level, that is, for a collection of documents a timeline is extracted or a ranked list of documents is returned for a temporal query term. In this paper, we present an approach to characterize individual dates, which can be of different granularities, and terms. Given a query date, a ranked list of terms is determined that are highly relevant for that date and best summarize the date. Analogously, for a query term, a ranked list of dates is determined that best characterize the term. Focusing on just dates and single terms as they occur in documents provides a fine-grained query and exploration method for document collections. Our approach is based on a weighted bipartite graph representing the co-occurrences of time expressions and terms in a collection of documents. We present different measures to obtain a ranked list of dates and terms for a query term and date, respectively. Our experiments and evaluation using Wikipedia as a document collection show that our approach provides an effective means in support of date and temporal term summarization.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-14T13:26:01Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55889"/>
    <dc:contributor>Bögel, Thomas</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Spitz, Andreas</dc:contributor>
    <dc:contributor>Gertz, Michael</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:issued>2015</dcterms:issued>
    <dc:creator>Gertz, Michael</dc:creator>
    <dcterms:title>Terms in Time and Times in Context : A Graph-based Term-Time Ranking Model</dcterms:title>
    <dc:creator>Spitz, Andreas</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen