Darwin at High Temperature : Advancing Solar Cell Material Design Using Defect Kinetics Simulations and Evolutionary Optimization

Lade...
Vorschaubild
Dateien
Fenning_2-t4nciq8xvwgo5.pdf
Fenning_2-t4nciq8xvwgo5.pdfGröße: 795.45 KBDownloads: 352
Datum
2014
Autor:innen
Fenning, David P.
Hofstetter, Jasmin
Morishige, Ashley E.
Powell, Douglas M.
Buonassisi, Tonio
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Advanced Energy Materials. 2014, 4(13), 1400459. ISSN 1614-6832. eISSN 1614-6840. Available under: doi: 10.1002/aenm.201400459
Zusammenfassung

Material defects govern the performance of a wide range of energy conversion and storage devices, including photovoltaics, thermoelectrics, and batteries. The success of large-scale, cost-effective manufacturing hinges upon rigorous material optimization to mitigate deleterious defects. Material processing simulations have the potential to accelerate novel energy technology development by modeling defect-evolution thermodynamics and kinetics during processing of raw materials into devices. Here, a predictive process optimization framework is presented for rapid material and process development. A solar cell simulation tool that models defect kinetics during processing is coupled with a genetic algorithm to optimize processing conditions in silico. Experimental samples processed according to conditions suggested by the optimization show significant improvements in material performance, indicated by minority carrier lifetime gains, and confirm the simulated directions for process improvement. This material optimization framework demonstrates the potential for process simulation to leverage fundamental defect characterization and high-throughput computing to accelerate the pace of learning in materials processing for energy applications.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
530 Physik
Schlagwörter
process simulations, manufacturing optimization, photovoltaic devices, genetic algorithms, defects
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690FENNING, David P., Jasmin HOFSTETTER, Ashley E. MORISHIGE, Douglas M. POWELL, Annika ZUSCHLAG, Giso HAHN, Tonio BUONASSISI, 2014. Darwin at High Temperature : Advancing Solar Cell Material Design Using Defect Kinetics Simulations and Evolutionary Optimization. In: Advanced Energy Materials. 2014, 4(13), 1400459. ISSN 1614-6832. eISSN 1614-6840. Available under: doi: 10.1002/aenm.201400459
BibTex
@article{Fenning2014Darwi-29324,
  year={2014},
  doi={10.1002/aenm.201400459},
  title={Darwin at High Temperature : Advancing Solar Cell Material Design Using Defect Kinetics Simulations and Evolutionary Optimization},
  number={13},
  volume={4},
  issn={1614-6832},
  journal={Advanced Energy Materials},
  author={Fenning, David P. and Hofstetter, Jasmin and Morishige, Ashley E. and Powell, Douglas M. and Zuschlag, Annika and Hahn, Giso and Buonassisi, Tonio},
  note={Article Number: 1400459}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29324">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">Material defects govern the performance of a wide range of energy conversion and storage devices, including photovoltaics, thermoelectrics, and batteries. The success of large-scale, cost-effective manufacturing hinges upon rigorous material optimization to mitigate deleterious defects. Material processing simulations have the potential to accelerate novel energy technology development by modeling defect-evolution thermodynamics and kinetics during processing of raw materials into devices. Here, a predictive process optimization framework is presented for rapid material and process development. A solar cell simulation tool that models defect kinetics during processing is coupled with a genetic algorithm to optimize processing conditions in silico. Experimental samples processed according to conditions suggested by the optimization show significant improvements in material performance, indicated by minority carrier lifetime gains, and confirm the simulated directions for process improvement. This material optimization framework demonstrates the potential for process simulation to leverage fundamental defect characterization and high-throughput computing to accelerate the pace of learning in materials processing for energy applications.</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Morishige, Ashley E.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29324/1/Fenning_2-t4nciq8xvwgo5.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Fenning, David P.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-27T09:36:18Z</dc:date>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29324"/>
    <dc:creator>Buonassisi, Tonio</dc:creator>
    <dc:creator>Powell, Douglas M.</dc:creator>
    <dc:creator>Fenning, David P.</dc:creator>
    <dc:creator>Morishige, Ashley E.</dc:creator>
    <dc:contributor>Powell, Douglas M.</dc:contributor>
    <dcterms:issued>2014</dcterms:issued>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29324/1/Fenning_2-t4nciq8xvwgo5.pdf"/>
    <dc:creator>Zuschlag, Annika</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-27T09:36:18Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Hofstetter, Jasmin</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Zuschlag, Annika</dc:contributor>
    <dc:creator>Hahn, Giso</dc:creator>
    <dcterms:title>Darwin at High Temperature : Advancing Solar Cell Material Design Using Defect Kinetics Simulations and Evolutionary Optimization</dcterms:title>
    <dc:contributor>Hofstetter, Jasmin</dc:contributor>
    <dc:contributor>Buonassisi, Tonio</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Hahn, Giso</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen