Publikation:

Darwin at High Temperature : Advancing Solar Cell Material Design Using Defect Kinetics Simulations and Evolutionary Optimization

Lade...
Vorschaubild

Dateien

Fenning_2-t4nciq8xvwgo5.pdf
Fenning_2-t4nciq8xvwgo5.pdfGröße: 795.45 KBDownloads: 388

Datum

2014

Autor:innen

Fenning, David P.
Hofstetter, Jasmin
Morishige, Ashley E.
Powell, Douglas M.
Buonassisi, Tonio

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Advanced Energy Materials. 2014, 4(13), 1400459. ISSN 1614-6832. eISSN 1614-6840. Available under: doi: 10.1002/aenm.201400459

Zusammenfassung

Material defects govern the performance of a wide range of energy conversion and storage devices, including photovoltaics, thermoelectrics, and batteries. The success of large-scale, cost-effective manufacturing hinges upon rigorous material optimization to mitigate deleterious defects. Material processing simulations have the potential to accelerate novel energy technology development by modeling defect-evolution thermodynamics and kinetics during processing of raw materials into devices. Here, a predictive process optimization framework is presented for rapid material and process development. A solar cell simulation tool that models defect kinetics during processing is coupled with a genetic algorithm to optimize processing conditions in silico. Experimental samples processed according to conditions suggested by the optimization show significant improvements in material performance, indicated by minority carrier lifetime gains, and confirm the simulated directions for process improvement. This material optimization framework demonstrates the potential for process simulation to leverage fundamental defect characterization and high-throughput computing to accelerate the pace of learning in materials processing for energy applications.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

process simulations, manufacturing optimization, photovoltaic devices, genetic algorithms, defects

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FENNING, David P., Jasmin HOFSTETTER, Ashley E. MORISHIGE, Douglas M. POWELL, Annika ZUSCHLAG, Giso HAHN, Tonio BUONASSISI, 2014. Darwin at High Temperature : Advancing Solar Cell Material Design Using Defect Kinetics Simulations and Evolutionary Optimization. In: Advanced Energy Materials. 2014, 4(13), 1400459. ISSN 1614-6832. eISSN 1614-6840. Available under: doi: 10.1002/aenm.201400459
BibTex
@article{Fenning2014Darwi-29324,
  year={2014},
  doi={10.1002/aenm.201400459},
  title={Darwin at High Temperature : Advancing Solar Cell Material Design Using Defect Kinetics Simulations and Evolutionary Optimization},
  number={13},
  volume={4},
  issn={1614-6832},
  journal={Advanced Energy Materials},
  author={Fenning, David P. and Hofstetter, Jasmin and Morishige, Ashley E. and Powell, Douglas M. and Zuschlag, Annika and Hahn, Giso and Buonassisi, Tonio},
  note={Article Number: 1400459}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29324">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">Material defects govern the performance of a wide range of energy conversion and storage devices, including photovoltaics, thermoelectrics, and batteries. The success of large-scale, cost-effective manufacturing hinges upon rigorous material optimization to mitigate deleterious defects. Material processing simulations have the potential to accelerate novel energy technology development by modeling defect-evolution thermodynamics and kinetics during processing of raw materials into devices. Here, a predictive process optimization framework is presented for rapid material and process development. A solar cell simulation tool that models defect kinetics during processing is coupled with a genetic algorithm to optimize processing conditions in silico. Experimental samples processed according to conditions suggested by the optimization show significant improvements in material performance, indicated by minority carrier lifetime gains, and confirm the simulated directions for process improvement. This material optimization framework demonstrates the potential for process simulation to leverage fundamental defect characterization and high-throughput computing to accelerate the pace of learning in materials processing for energy applications.</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Morishige, Ashley E.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29324/1/Fenning_2-t4nciq8xvwgo5.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Fenning, David P.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-27T09:36:18Z</dc:date>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29324"/>
    <dc:creator>Buonassisi, Tonio</dc:creator>
    <dc:creator>Powell, Douglas M.</dc:creator>
    <dc:creator>Fenning, David P.</dc:creator>
    <dc:creator>Morishige, Ashley E.</dc:creator>
    <dc:contributor>Powell, Douglas M.</dc:contributor>
    <dcterms:issued>2014</dcterms:issued>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29324/1/Fenning_2-t4nciq8xvwgo5.pdf"/>
    <dc:creator>Zuschlag, Annika</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-27T09:36:18Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Hofstetter, Jasmin</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Zuschlag, Annika</dc:contributor>
    <dc:creator>Hahn, Giso</dc:creator>
    <dcterms:title>Darwin at High Temperature : Advancing Solar Cell Material Design Using Defect Kinetics Simulations and Evolutionary Optimization</dcterms:title>
    <dc:contributor>Hofstetter, Jasmin</dc:contributor>
    <dc:contributor>Buonassisi, Tonio</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Hahn, Giso</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen