Publikation:

Voltage-sustained self-oscillation of a nano-mechanical electron shuttle

Lade...
Vorschaubild

Dateien

Voltage-sustained self-oscillation.pdf
Voltage-sustained self-oscillation.pdfGröße: 810.21 KBDownloads: 434

Datum

2012

Autor:innen

König, Daniel R.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Applied Physics Letters. 2012, 101(21), 213111. ISSN 0003-6951. eISSN 1077-3118. Available under: doi: 10.1063/1.4767359

Zusammenfassung

One core challenge of nanoelectromechanical systems (NEMS) is their efficient actuation. A promising concept superseding resonant driving is self-oscillation. Here, we demonstrate voltage-sustained self-oscillation of a nanomechanical charge shuttle. Stable transport at 4.2 K is observed for billions of shuttling cycles, giving rise to ohmic current-voltage curves with a sharp dissipation threshold. With only a few nanowatts of input energy, the presented scheme is suitable for operation in the millikelvin regime where Coulomb blockade-controlled single electron shuttling is anticipated.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KÖNIG, Daniel R., Eva M. WEIG, 2012. Voltage-sustained self-oscillation of a nano-mechanical electron shuttle. In: Applied Physics Letters. 2012, 101(21), 213111. ISSN 0003-6951. eISSN 1077-3118. Available under: doi: 10.1063/1.4767359
BibTex
@article{Konig2012Volta-22716,
  year={2012},
  doi={10.1063/1.4767359},
  title={Voltage-sustained self-oscillation of a nano-mechanical electron shuttle},
  number={21},
  volume={101},
  issn={0003-6951},
  journal={Applied Physics Letters},
  author={König, Daniel R. and Weig, Eva M.},
  note={Article Number: 213111}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22716">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-08T13:00:43Z</dcterms:available>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Weig, Eva M.</dc:creator>
    <dcterms:title>Voltage-sustained self-oscillation of a nano-mechanical electron shuttle</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:abstract xml:lang="eng">One core challenge of nanoelectromechanical systems (NEMS) is their efficient actuation. A promising concept superseding resonant driving is self-oscillation. Here, we demonstrate voltage-sustained self-oscillation of a nanomechanical charge shuttle. Stable transport at 4.2 K is observed for billions of shuttling cycles, giving rise to ohmic current-voltage curves with a sharp dissipation threshold. With only a few nanowatts of input energy, the presented scheme is suitable for operation in the millikelvin regime where Coulomb blockade-controlled single electron shuttling is anticipated.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22716/2/Voltage-sustained%20self-oscillation.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:issued>2012</dcterms:issued>
    <dc:contributor>Weig, Eva M.</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-08T13:00:43Z</dc:date>
    <dc:contributor>König, Daniel R.</dc:contributor>
    <dc:creator>König, Daniel R.</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22716/2/Voltage-sustained%20self-oscillation.pdf"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22716"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:bibliographicCitation>Applied Physics Letters ; 101 (2012), 21. - 213111</dcterms:bibliographicCitation>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen