Multiplexity analysis of networks using multigraph representations

Lade...
Vorschaubild
Dateien
Shafie_2-te2vfrtfd18p0.pdf
Shafie_2-te2vfrtfd18p0.pdfGröße: 600.69 KBDownloads: 36
Datum
2021
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Statistical Methods & Applications. Springer. 2021, 30(5), pp. 1425-1444. ISSN 1618-2510. eISSN 1613-981X. Available under: doi: 10.1007/s10260-021-00596-0
Zusammenfassung

Multivariate networks comprising several compositional and structural variables can be represented as multigraphs by various forms of aggregations based on vertex attributes. We propose a framework to perform exploratory and confirmatory multiplexity analysis of aggregated multigraphs in order to find relevant associations between vertex and edge attributes. The exploration is performed by comparing frequencies of the different edges within and between aggregated vertex categories, while the confirmatory analysis is performed using derived complexity or multiplexity statistics under different random multigraph models. These statistics are defined by the distribution of edge multiplicities and provide information on the covariation and dependencies of different edges given vertex attributes. The presented approach highlights the need to further analyse and model structural dependencies with respect to edge entrainment. We illustrate the approach by applying it on a well known multivariate network dataset which has previously been analysed in the context of multiplexity.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
310 Statistik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690SHAFIE, Termeh, David SCHOCH, 2021. Multiplexity analysis of networks using multigraph representations. In: Statistical Methods & Applications. Springer. 2021, 30(5), pp. 1425-1444. ISSN 1618-2510. eISSN 1613-981X. Available under: doi: 10.1007/s10260-021-00596-0
BibTex
@article{Shafie2021-09-30Multi-66690,
  year={2021},
  doi={10.1007/s10260-021-00596-0},
  title={Multiplexity analysis of networks using multigraph representations},
  number={5},
  volume={30},
  issn={1618-2510},
  journal={Statistical Methods & Applications},
  pages={1425--1444},
  author={Shafie, Termeh and Schoch, David}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66690">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-20T08:53:05Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dcterms:abstract>Multivariate networks comprising several compositional and structural variables can be represented as multigraphs by various forms of aggregations based on vertex attributes. We propose a framework to perform exploratory and confirmatory multiplexity analysis of aggregated multigraphs in order to find relevant associations between vertex and edge attributes. The exploration is performed by comparing frequencies of the different edges within and between aggregated vertex categories, while the confirmatory analysis is performed using derived complexity or multiplexity statistics under different random multigraph models. These statistics are defined by the distribution of edge multiplicities and provide information on the covariation and dependencies of different edges given vertex attributes. The presented approach highlights the need to further analyse and model structural dependencies with respect to edge entrainment. We illustrate the approach by applying it on a well known multivariate network dataset which has previously been analysed in the context of multiplexity.</dcterms:abstract>
    <dc:creator>Schoch, David</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66690/1/Shafie_2-te2vfrtfd18p0.pdf"/>
    <dc:creator>Shafie, Termeh</dc:creator>
    <dcterms:title>Multiplexity analysis of networks using multigraph representations</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66690"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66690/1/Shafie_2-te2vfrtfd18p0.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-20T08:53:05Z</dcterms:available>
    <dc:contributor>Shafie, Termeh</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Schoch, David</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:issued>2021-09-30</dcterms:issued>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt
Diese Publikation teilen