Publikation:

On the degree and half-degree principle for symmetric polynomials

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2012

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Pure and Applied Algebra. 2012, 216(4), pp. 850-856. ISSN 0022-4049. Available under: doi: 10.1016/j.jpaa.2011.08.012

Zusammenfassung

In this note we aim to give a new, elementary proof of a statement that was first proved by Timofte (2003) [15]. It says that a symmetric real polynomial F of degree d in n variables is positive on R^n if and only if it is non-negative on the subset of points with at most max{⌊d/2⌋,2} distinct components. We deduce Timofte’s original statement as a corollary of a slightly more general statement on symmetric optimization problems. The idea that we are using to prove this statement is that of relating it to a linear optimization problem in the orbit space. The fact that for the case of the symmetric group S_n this can be viewed as a question on normalized univariate real polynomials with only real roots allows us to conclude the theorems in a very elementary way. We hope that the methods presented here will make it possible to derive similar statements also in the case of other groups.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690RIENER, Cordian, 2012. On the degree and half-degree principle for symmetric polynomials. In: Journal of Pure and Applied Algebra. 2012, 216(4), pp. 850-856. ISSN 0022-4049. Available under: doi: 10.1016/j.jpaa.2011.08.012
BibTex
@article{Riener2012degre-17510,
  year={2012},
  doi={10.1016/j.jpaa.2011.08.012},
  title={On the degree and half-degree principle for symmetric polynomials},
  number={4},
  volume={216},
  issn={0022-4049},
  journal={Journal of Pure and Applied Algebra},
  pages={850--856},
  author={Riener, Cordian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/17510">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-01-18T15:41:23Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Riener, Cordian</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-01-18T15:41:23Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/17510"/>
    <dcterms:abstract xml:lang="deu">In this note we aim to give a new, elementary proof of a statement that was first proved by Timofte (2003) [15]. It says that a symmetric real polynomial F of degree d in n variables is positive on R^n  if and only if it is non-negative on the subset of points with at most max{⌊d/2⌋,2} distinct components. We deduce Timofte’s original statement as a corollary of a slightly more general statement on symmetric optimization problems. The idea that we are using to prove this statement is that of relating it to a linear optimization problem in the orbit space. The fact that for the case of the symmetric group S_n this can be viewed as a question on normalized univariate real polynomials with only real roots allows us to conclude the theorems in a very elementary way. We hope that the methods presented here will make it possible to derive similar statements also in the case of other groups.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>2012</dcterms:issued>
    <dc:language>deu</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>On the degree and half-degree principle for symmetric polynomials</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:bibliographicCitation>Ersch. in: Journal of Pure and Applied Algebra ; 216 (2012), 4. - S. 850-856</dcterms:bibliographicCitation>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Riener, Cordian</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen