On the degree and half-degree principle for symmetric polynomials
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this note we aim to give a new, elementary proof of a statement that was first proved by Timofte (2003) [15]. It says that a symmetric real polynomial F of degree d in n variables is positive on R^n if and only if it is non-negative on the subset of points with at most max{⌊d/2⌋,2} distinct components. We deduce Timofte’s original statement as a corollary of a slightly more general statement on symmetric optimization problems. The idea that we are using to prove this statement is that of relating it to a linear optimization problem in the orbit space. The fact that for the case of the symmetric group S_n this can be viewed as a question on normalized univariate real polynomials with only real roots allows us to conclude the theorems in a very elementary way. We hope that the methods presented here will make it possible to derive similar statements also in the case of other groups.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
RIENER, Cordian, 2012. On the degree and half-degree principle for symmetric polynomials. In: Journal of Pure and Applied Algebra. 2012, 216(4), pp. 850-856. ISSN 0022-4049. Available under: doi: 10.1016/j.jpaa.2011.08.012BibTex
@article{Riener2012degre-17510, year={2012}, doi={10.1016/j.jpaa.2011.08.012}, title={On the degree and half-degree principle for symmetric polynomials}, number={4}, volume={216}, issn={0022-4049}, journal={Journal of Pure and Applied Algebra}, pages={850--856}, author={Riener, Cordian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/17510"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-01-18T15:41:23Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dc:creator>Riener, Cordian</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-01-18T15:41:23Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/17510"/> <dcterms:abstract xml:lang="deu">In this note we aim to give a new, elementary proof of a statement that was first proved by Timofte (2003) [15]. It says that a symmetric real polynomial F of degree d in n variables is positive on R^n if and only if it is non-negative on the subset of points with at most max{⌊d/2⌋,2} distinct components. We deduce Timofte’s original statement as a corollary of a slightly more general statement on symmetric optimization problems. The idea that we are using to prove this statement is that of relating it to a linear optimization problem in the orbit space. The fact that for the case of the symmetric group S_n this can be viewed as a question on normalized univariate real polynomials with only real roots allows us to conclude the theorems in a very elementary way. We hope that the methods presented here will make it possible to derive similar statements also in the case of other groups.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:issued>2012</dcterms:issued> <dc:language>deu</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>On the degree and half-degree principle for symmetric polynomials</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:bibliographicCitation>Ersch. in: Journal of Pure and Applied Algebra ; 216 (2012), 4. - S. 850-856</dcterms:bibliographicCitation> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Riener, Cordian</dc:contributor> </rdf:Description> </rdf:RDF>