Visual Exploration of Large Metabolic Models

Lade...
Vorschaubild
Dateien
Aichem_2-tkyepulli65n8.pdf
Aichem_2-tkyepulli65n8.pdfGröße: 2.85 MBDownloads: 177
Datum
2021
Autor:innen
Czauderna, Tobias
Zhu, Yan
Zhao, Jinxin
Klapperstück, Matthias
Li, Jian
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Bioinformatics. Oxford University Press. 2021, 37(23), pp. 4460-4468. ISSN 0266-7061. eISSN 1367-4811. Available under: doi: 10.1093/bioinformatics/btab335
Zusammenfassung

Motivation:
Large metabolic models, including genome-scale metabolic models (GSMMs), are nowadays common in systems biology, biotechnology and pharmacology. They typically contain thousands of metabolites and reactions and therefore methods for their automatic visualisation and interactive exploration can facilitate a better understanding of these models.

Results:
We developed a novel method for the visual exploration of large metabolic models and implemented it in LMME (Large Metabolic Model Explorer), an add-on for the biological network analysis tool VANTED. The underlying idea of our method is to analyse a large model as follows. Starting from a decomposition into several subsystems, relationships between these subsystems are identified and an overview is computed and visualised. From this overview, detailed subviews may be constructed and visualised in order to explore subsystems and relationships in greater detail. Decompositions may either be predefined or computed, using built-in or self-implemented methods. Realised as add-on for VANTED, LMME is embedded in a domain-specific environment, allowing for further related analysis at any stage during the exploration. We describe the method, provide a use case, and discuss the strengths and weaknesses of different decomposition methods.

Availability:
The methods and algorithms presented here are implemented in LMME, an open-source add-on for VANTED. LMME can be downloaded from www.cls.uni-konstanz.de/software/lmme and VANTED can be downloaded from www.vanted.org. The source code of LMME is available from GitHub, at https://github.com/LSI-UniKonstanz/lmme.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690AICHEM, Michael, Tobias CZAUDERNA, Yan ZHU, Jinxin ZHAO, Matthias KLAPPERSTÜCK, Karsten KLEIN, Jian LI, Falk SCHREIBER, 2021. Visual Exploration of Large Metabolic Models. In: Bioinformatics. Oxford University Press. 2021, 37(23), pp. 4460-4468. ISSN 0266-7061. eISSN 1367-4811. Available under: doi: 10.1093/bioinformatics/btab335
BibTex
@article{Aichem2021-05-10Visua-53691,
  year={2021},
  doi={10.1093/bioinformatics/btab335},
  title={Visual Exploration of Large Metabolic Models},
  number={23},
  volume={37},
  issn={0266-7061},
  journal={Bioinformatics},
  pages={4460--4468},
  author={Aichem, Michael and Czauderna, Tobias and Zhu, Yan and Zhao, Jinxin and Klapperstück, Matthias and Klein, Karsten and Li, Jian and Schreiber, Falk}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53691">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Li, Jian</dc:creator>
    <dcterms:issued>2021-05-10</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-05-17T08:42:06Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:creator>Zhu, Yan</dc:creator>
    <dc:creator>Aichem, Michael</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Aichem, Michael</dc:contributor>
    <dc:contributor>Czauderna, Tobias</dc:contributor>
    <dc:contributor>Schreiber, Falk</dc:contributor>
    <dc:contributor>Li, Jian</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53691"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53691/1/Aichem_2-tkyepulli65n8.pdf"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53691/1/Aichem_2-tkyepulli65n8.pdf"/>
    <dc:contributor>Klein, Karsten</dc:contributor>
    <dc:creator>Klein, Karsten</dc:creator>
    <dcterms:abstract xml:lang="eng">Motivation:&lt;br /&gt;Large metabolic models, including genome-scale metabolic models (GSMMs), are nowadays common in systems biology, biotechnology and pharmacology. They typically contain thousands of metabolites and reactions and therefore methods for their automatic visualisation and interactive exploration can facilitate a better understanding of these models.&lt;br /&gt;&lt;br /&gt;Results:&lt;br /&gt;We developed a novel method for the visual exploration of large metabolic models and implemented it in LMME (Large Metabolic Model Explorer), an add-on for the biological network analysis tool VANTED. The underlying idea of our method is to analyse a large model as follows. Starting from a decomposition into several subsystems, relationships between these subsystems are identified and an overview is computed and visualised. From this overview, detailed subviews may be constructed and visualised in order to explore subsystems and relationships in greater detail. Decompositions may either be predefined or computed, using built-in or self-implemented methods. Realised as add-on for VANTED, LMME is embedded in a domain-specific environment, allowing for further related analysis at any stage during the exploration. We describe the method, provide a use case, and discuss the strengths and weaknesses of different decomposition methods.&lt;br /&gt;&lt;br /&gt;Availability:&lt;br /&gt;The methods and algorithms presented here are implemented in LMME, an open-source add-on for VANTED. LMME can be downloaded from www.cls.uni-konstanz.de/software/lmme and VANTED can be downloaded from www.vanted.org. The source code of LMME is available from GitHub, at https://github.com/LSI-UniKonstanz/lmme.</dcterms:abstract>
    <dc:contributor>Zhu, Yan</dc:contributor>
    <dc:creator>Zhao, Jinxin</dc:creator>
    <dc:contributor>Klapperstück, Matthias</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-05-17T08:42:06Z</dc:date>
    <dc:creator>Schreiber, Falk</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Czauderna, Tobias</dc:creator>
    <dc:contributor>Zhao, Jinxin</dc:contributor>
    <dc:creator>Klapperstück, Matthias</dc:creator>
    <dcterms:title>Visual Exploration of Large Metabolic Models</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen