Publikation:

Visual Exploration of Large Metabolic Models

Lade...
Vorschaubild

Dateien

Aichem_2-tkyepulli65n8.pdf
Aichem_2-tkyepulli65n8.pdfGröße: 2.85 MBDownloads: 200

Datum

2021

Autor:innen

Czauderna, Tobias
Zhu, Yan
Zhao, Jinxin
Klapperstück, Matthias
Li, Jian

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Bioinformatics. Oxford University Press. 2021, 37(23), pp. 4460-4468. ISSN 0266-7061. eISSN 1367-4811. Available under: doi: 10.1093/bioinformatics/btab335

Zusammenfassung

Motivation:
Large metabolic models, including genome-scale metabolic models (GSMMs), are nowadays common in systems biology, biotechnology and pharmacology. They typically contain thousands of metabolites and reactions and therefore methods for their automatic visualisation and interactive exploration can facilitate a better understanding of these models.

Results:
We developed a novel method for the visual exploration of large metabolic models and implemented it in LMME (Large Metabolic Model Explorer), an add-on for the biological network analysis tool VANTED. The underlying idea of our method is to analyse a large model as follows. Starting from a decomposition into several subsystems, relationships between these subsystems are identified and an overview is computed and visualised. From this overview, detailed subviews may be constructed and visualised in order to explore subsystems and relationships in greater detail. Decompositions may either be predefined or computed, using built-in or self-implemented methods. Realised as add-on for VANTED, LMME is embedded in a domain-specific environment, allowing for further related analysis at any stage during the exploration. We describe the method, provide a use case, and discuss the strengths and weaknesses of different decomposition methods.

Availability:
The methods and algorithms presented here are implemented in LMME, an open-source add-on for VANTED. LMME can be downloaded from www.cls.uni-konstanz.de/software/lmme and VANTED can be downloaded from www.vanted.org. The source code of LMME is available from GitHub, at https://github.com/LSI-UniKonstanz/lmme.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690AICHEM, Michael, Tobias CZAUDERNA, Yan ZHU, Jinxin ZHAO, Matthias KLAPPERSTÜCK, Karsten KLEIN, Jian LI, Falk SCHREIBER, 2021. Visual Exploration of Large Metabolic Models. In: Bioinformatics. Oxford University Press. 2021, 37(23), pp. 4460-4468. ISSN 0266-7061. eISSN 1367-4811. Available under: doi: 10.1093/bioinformatics/btab335
BibTex
@article{Aichem2021-05-10Visua-53691,
  year={2021},
  doi={10.1093/bioinformatics/btab335},
  title={Visual Exploration of Large Metabolic Models},
  number={23},
  volume={37},
  issn={0266-7061},
  journal={Bioinformatics},
  pages={4460--4468},
  author={Aichem, Michael and Czauderna, Tobias and Zhu, Yan and Zhao, Jinxin and Klapperstück, Matthias and Klein, Karsten and Li, Jian and Schreiber, Falk}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53691">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Li, Jian</dc:creator>
    <dcterms:issued>2021-05-10</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-05-17T08:42:06Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:creator>Zhu, Yan</dc:creator>
    <dc:creator>Aichem, Michael</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Aichem, Michael</dc:contributor>
    <dc:contributor>Czauderna, Tobias</dc:contributor>
    <dc:contributor>Schreiber, Falk</dc:contributor>
    <dc:contributor>Li, Jian</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53691"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53691/1/Aichem_2-tkyepulli65n8.pdf"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53691/1/Aichem_2-tkyepulli65n8.pdf"/>
    <dc:contributor>Klein, Karsten</dc:contributor>
    <dc:creator>Klein, Karsten</dc:creator>
    <dcterms:abstract xml:lang="eng">Motivation:&lt;br /&gt;Large metabolic models, including genome-scale metabolic models (GSMMs), are nowadays common in systems biology, biotechnology and pharmacology. They typically contain thousands of metabolites and reactions and therefore methods for their automatic visualisation and interactive exploration can facilitate a better understanding of these models.&lt;br /&gt;&lt;br /&gt;Results:&lt;br /&gt;We developed a novel method for the visual exploration of large metabolic models and implemented it in LMME (Large Metabolic Model Explorer), an add-on for the biological network analysis tool VANTED. The underlying idea of our method is to analyse a large model as follows. Starting from a decomposition into several subsystems, relationships between these subsystems are identified and an overview is computed and visualised. From this overview, detailed subviews may be constructed and visualised in order to explore subsystems and relationships in greater detail. Decompositions may either be predefined or computed, using built-in or self-implemented methods. Realised as add-on for VANTED, LMME is embedded in a domain-specific environment, allowing for further related analysis at any stage during the exploration. We describe the method, provide a use case, and discuss the strengths and weaknesses of different decomposition methods.&lt;br /&gt;&lt;br /&gt;Availability:&lt;br /&gt;The methods and algorithms presented here are implemented in LMME, an open-source add-on for VANTED. LMME can be downloaded from www.cls.uni-konstanz.de/software/lmme and VANTED can be downloaded from www.vanted.org. The source code of LMME is available from GitHub, at https://github.com/LSI-UniKonstanz/lmme.</dcterms:abstract>
    <dc:contributor>Zhu, Yan</dc:contributor>
    <dc:creator>Zhao, Jinxin</dc:creator>
    <dc:contributor>Klapperstück, Matthias</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-05-17T08:42:06Z</dc:date>
    <dc:creator>Schreiber, Falk</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Czauderna, Tobias</dc:creator>
    <dc:contributor>Zhao, Jinxin</dc:contributor>
    <dc:creator>Klapperstück, Matthias</dc:creator>
    <dcterms:title>Visual Exploration of Large Metabolic Models</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen