Using Cross-Task Classification for Classifying Workload Levels in Complex Learning Tasks
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
According to Cognitive Load Theory the type and amount of workload (WL) during learning is crucial for successful learning and should be held within an optimal range of learners' memory capacity. Therefore, we aim at developing electroencephalogram (EEG) based learning environments adapting to learners individual WL online. To achieve this goal efficient classification methods are necessary. Support Vector Machines (SVMs) can accurately classify WL using within-task classification, but within-task classification is not feasible in complex learning environments. Therefore, the present study examined cross-task classification accuracies for SVMs trained on EEG-signals, recorded while participants (N= 21) had to solve three working memory tasks. While within-task classification accuracies were high for WM tasks (average: 95% - 97 %), cross-task classification performances were not significant over chance level. Since cross-task classification is a necessary step towards developing generalized classifiers, we will discuss the benefits and drawbacks as well as possible enhancements in the course of this paper to use it as an effective approach for learning environments.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WALTER, Carina, Stephanie N. L. SCHMIDT, Wolfgang ROSENSTIEL, Peter GERJETS, Martin BOGDAN, 2013. Using Cross-Task Classification for Classifying Workload Levels in Complex Learning Tasks. 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction. Geneva, Switzerland, 2. Sept. 2013 - 5. Sept. 2013. In: 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction. Piscataway, NJ: IEEE, 2013, pp. 876-881. ISSN 2156-8103. eISSN 2156-8111. ISBN 978-0-7695-5048-0. Available under: doi: 10.1109/ACII.2013.164BibTex
@inproceedings{Walter2013Using-56616, year={2013}, doi={10.1109/ACII.2013.164}, title={Using Cross-Task Classification for Classifying Workload Levels in Complex Learning Tasks}, isbn={978-0-7695-5048-0}, issn={2156-8103}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2013 Humaine Association Conference on Affective Computing and Intelligent Interaction}, pages={876--881}, author={Walter, Carina and Schmidt, Stephanie N. L. and Rosenstiel, Wolfgang and Gerjets, Peter and Bogdan, Martin} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56616"> <dc:contributor>Schmidt, Stephanie N. L.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dcterms:issued>2013</dcterms:issued> <dc:contributor>Rosenstiel, Wolfgang</dc:contributor> <dcterms:abstract xml:lang="eng">According to Cognitive Load Theory the type and amount of workload (WL) during learning is crucial for successful learning and should be held within an optimal range of learners' memory capacity. Therefore, we aim at developing electroencephalogram (EEG) based learning environments adapting to learners individual WL online. To achieve this goal efficient classification methods are necessary. Support Vector Machines (SVMs) can accurately classify WL using within-task classification, but within-task classification is not feasible in complex learning environments. Therefore, the present study examined cross-task classification accuracies for SVMs trained on EEG-signals, recorded while participants (N= 21) had to solve three working memory tasks. While within-task classification accuracies were high for WM tasks (average: 95% - 97 %), cross-task classification performances were not significant over chance level. Since cross-task classification is a necessary step towards developing generalized classifiers, we will discuss the benefits and drawbacks as well as possible enhancements in the course of this paper to use it as an effective approach for learning environments.</dcterms:abstract> <dc:creator>Schmidt, Stephanie N. L.</dc:creator> <dc:creator>Bogdan, Martin</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:creator>Walter, Carina</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Walter, Carina</dc:contributor> <dcterms:title>Using Cross-Task Classification for Classifying Workload Levels in Complex Learning Tasks</dcterms:title> <dc:creator>Rosenstiel, Wolfgang</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-21T14:15:34Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:language>eng</dc:language> <dc:contributor>Bogdan, Martin</dc:contributor> <dc:creator>Gerjets, Peter</dc:creator> <dc:contributor>Gerjets, Peter</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56616"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-21T14:15:34Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>