Using Cross-Task Classification for Classifying Workload Levels in Complex Learning Tasks

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2013
Autor:innen
Walter, Carina
Rosenstiel, Wolfgang
Gerjets, Peter
Bogdan, Martin
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
2013 Humaine Association Conference on Affective Computing and Intelligent Interaction. Piscataway, NJ: IEEE, 2013, pp. 876-881. ISSN 2156-8103. eISSN 2156-8111. ISBN 978-0-7695-5048-0. Available under: doi: 10.1109/ACII.2013.164
Zusammenfassung

According to Cognitive Load Theory the type and amount of workload (WL) during learning is crucial for successful learning and should be held within an optimal range of learners' memory capacity. Therefore, we aim at developing electroencephalogram (EEG) based learning environments adapting to learners individual WL online. To achieve this goal efficient classification methods are necessary. Support Vector Machines (SVMs) can accurately classify WL using within-task classification, but within-task classification is not feasible in complex learning environments. Therefore, the present study examined cross-task classification accuracies for SVMs trained on EEG-signals, recorded while participants (N= 21) had to solve three working memory tasks. While within-task classification accuracies were high for WM tasks (average: 95% - 97 %), cross-task classification performances were not significant over chance level. Since cross-task classification is a necessary step towards developing generalized classifiers, we will discuss the benefits and drawbacks as well as possible enhancements in the course of this paper to use it as an effective approach for learning environments.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
150 Psychologie
Schlagwörter
Classification, Support Vector Machines, EEG, Workload
Konferenz
2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, 2. Sept. 2013 - 5. Sept. 2013, Geneva, Switzerland
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690WALTER, Carina, Stephanie N. L. SCHMIDT, Wolfgang ROSENSTIEL, Peter GERJETS, Martin BOGDAN, 2013. Using Cross-Task Classification for Classifying Workload Levels in Complex Learning Tasks. 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction. Geneva, Switzerland, 2. Sept. 2013 - 5. Sept. 2013. In: 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction. Piscataway, NJ: IEEE, 2013, pp. 876-881. ISSN 2156-8103. eISSN 2156-8111. ISBN 978-0-7695-5048-0. Available under: doi: 10.1109/ACII.2013.164
BibTex
@inproceedings{Walter2013Using-56616,
  year={2013},
  doi={10.1109/ACII.2013.164},
  title={Using Cross-Task Classification for Classifying Workload Levels in Complex Learning Tasks},
  isbn={978-0-7695-5048-0},
  issn={2156-8103},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2013 Humaine Association Conference on Affective Computing and Intelligent Interaction},
  pages={876--881},
  author={Walter, Carina and Schmidt, Stephanie N. L. and Rosenstiel, Wolfgang and Gerjets, Peter and Bogdan, Martin}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56616">
    <dc:contributor>Schmidt, Stephanie N. L.</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dcterms:issued>2013</dcterms:issued>
    <dc:contributor>Rosenstiel, Wolfgang</dc:contributor>
    <dcterms:abstract xml:lang="eng">According to Cognitive Load Theory the type and amount of workload (WL) during learning is crucial for successful learning and should be held within an optimal range of learners' memory capacity. Therefore, we aim at developing electroencephalogram (EEG) based learning environments adapting to learners individual WL online. To achieve this goal efficient classification methods are necessary. Support Vector Machines (SVMs) can accurately classify WL using within-task classification, but within-task classification is not feasible in complex learning environments. Therefore, the present study examined cross-task classification accuracies for SVMs trained on EEG-signals, recorded while participants (N= 21) had to solve three working memory tasks. While within-task classification accuracies were high for WM tasks (average: 95% - 97 %), cross-task classification performances were not significant over chance level. Since cross-task classification is a necessary step towards developing generalized classifiers, we will discuss the benefits and drawbacks as well as possible enhancements in the course of this paper to use it as an effective approach for learning environments.</dcterms:abstract>
    <dc:creator>Schmidt, Stephanie N. L.</dc:creator>
    <dc:creator>Bogdan, Martin</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Walter, Carina</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Walter, Carina</dc:contributor>
    <dcterms:title>Using Cross-Task Classification for Classifying Workload Levels in Complex Learning Tasks</dcterms:title>
    <dc:creator>Rosenstiel, Wolfgang</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-21T14:15:34Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Bogdan, Martin</dc:contributor>
    <dc:creator>Gerjets, Peter</dc:creator>
    <dc:contributor>Gerjets, Peter</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56616"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-21T14:15:34Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen