Publikation:

How to Make Sense of Team Sport Data : From Acquisition to Data Modeling and Research Aspects

Lade...
Vorschaubild

Dateien

Stein_0-390361.pdf
Stein_0-390361.pdfGröße: 8.61 MBDownloads: 993

Datum

2017

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Data. 2017, 2(1), 2. eISSN 2306-5729. Available under: doi: 10.3390/data2010002

Zusammenfassung

Automatic and interactive data analysis is instrumental in making use of increasing amounts of complex data. Owing to novel sensor modalities, analysis of data generated in professional team sport leagues such as soccer, baseball, and basketball has recently become of concern, with potentially high commercial and research interest. The analysis of team ball games can serve many goals, e.g., in coaching to understand effects of strategies and tactics, or to derive insights improving performance. Also, it is often decisive to trainers and analysts to understand why a certain movement of a player or groups of players happened, and what the respective influencing factors are. We consider team sport as group movement including collaboration and competition of individuals following specific rule sets. Analyzing team sports is a challenging problem as it involves joint understanding of heterogeneous data perspectives, including high-dimensional, video, and movement data, as well as considering team behavior and rules (constraints) given in the particular team sport. We identify important components of team sport data, exemplified by the soccer case, and explain how to analyze team sport data in general. We identify challenges arising when facing these data sets and we propose a multi-facet view and analysis including pattern detection, context-aware analysis, and visual explanation. We also present applicable methods and technologies covering the heterogeneous aspects in team sport data.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

sport analytics; visual analytics; high frequency spatio-temporal data

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690STEIN, Manuel, Halldor JANETZKO, Daniel SEEBACHER, Alexander JÄGER, Manuel NAGEL, Jürgen HÖLSCH, Sven KOSUB, Tobias SCHRECK, Daniel A. KEIM, Michael GROSSNIKLAUS, 2017. How to Make Sense of Team Sport Data : From Acquisition to Data Modeling and Research Aspects. In: Data. 2017, 2(1), 2. eISSN 2306-5729. Available under: doi: 10.3390/data2010002
BibTex
@article{Stein2017-03Sense-38112,
  year={2017},
  doi={10.3390/data2010002},
  title={How to Make Sense of Team Sport Data : From Acquisition to Data Modeling and Research Aspects},
  number={1},
  volume={2},
  journal={Data},
  author={Stein, Manuel and Janetzko, Halldor and Seebacher, Daniel and Jäger, Alexander and Nagel, Manuel and Hölsch, Jürgen and Kosub, Sven and Schreck, Tobias and Keim, Daniel A. and Grossniklaus, Michael},
  note={Article Number: 2}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38112">
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38112/3/Stein_0-390361.pdf"/>
    <dc:creator>Nagel, Manuel</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:contributor>Stein, Manuel</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-23T09:17:25Z</dc:date>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Jäger, Alexander</dc:creator>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:contributor>Janetzko, Halldor</dc:contributor>
    <dc:creator>Hölsch, Jürgen</dc:creator>
    <dc:contributor>Grossniklaus, Michael</dc:contributor>
    <dcterms:abstract xml:lang="eng">Automatic and interactive data analysis is instrumental in making use of increasing amounts of complex data. Owing to novel sensor modalities, analysis of data generated in professional team sport leagues such as soccer, baseball, and basketball has recently become of concern, with potentially high commercial and research interest. The analysis of team ball games can serve many goals, e.g., in coaching to understand effects of strategies and tactics, or to derive insights improving performance. Also, it is often decisive to trainers and analysts to understand why a certain movement of a player or groups of players happened, and what the respective influencing factors are. We consider team sport as group movement including collaboration and competition of individuals following specific rule sets. Analyzing team sports is a challenging problem as it involves joint understanding of heterogeneous data perspectives, including high-dimensional, video, and movement data, as well as considering team behavior and rules (constraints) given in the particular team sport. We identify important components of team sport data, exemplified by the soccer case, and explain how to analyze team sport data in general. We identify challenges arising when facing these data sets and we propose a multi-facet view and analysis including pattern detection, context-aware analysis, and visual explanation. We also present applicable methods and technologies covering the heterogeneous aspects in team sport data.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-23T09:17:25Z</dcterms:available>
    <dc:contributor>Nagel, Manuel</dc:contributor>
    <dc:contributor>Seebacher, Daniel</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38112"/>
    <dc:creator>Janetzko, Halldor</dc:creator>
    <dc:contributor>Jäger, Alexander</dc:contributor>
    <dc:contributor>Kosub, Sven</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38112/3/Stein_0-390361.pdf"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Hölsch, Jürgen</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Seebacher, Daniel</dc:creator>
    <dc:creator>Stein, Manuel</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>How to Make Sense of Team Sport Data : From Acquisition to Data Modeling and Research Aspects</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2017-03</dcterms:issued>
    <dc:creator>Grossniklaus, Michael</dc:creator>
    <dc:creator>Kosub, Sven</dc:creator>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen