Application of Jacobi's representation theorem to locally multiplicatively convex topological R-algebras
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Let A be a commutative unital RR-algebra and let ρ be a seminorm on A which satisfies ρ(ab)⩽ρ(a)ρ(b)ρ(ab)⩽ρ(a)ρ(b). We apply T. Jacobi's representation theorem to determine the closure of a ∑A2d-module S of A in the topology induced by ρ, for any integer d⩾1d⩾1. We show that this closure is exactly the set of all elements a∈Aa∈A such that α(a)⩾0α(a)⩾0 for every ρ-continuous RR-algebra homomorphism α:A→Rα:A→R with α(S)⊆[0,∞)α(S)⊆[0,∞), and that this result continues to hold when ρ is replaced by any locally multiplicatively convex topology τ on A. We obtain a representation of any linear functional L:A→RL:A→R which is continuous with respect to any such ρ or τ and nonnegative on S as integration with respect to a unique Radon measure on the space of all real-valued RR-algebra homomorphisms on A, and we characterize the support of the measure obtained in this way.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GHASEMI, Mehdi, Salma KUHLMANN, Murray MARSHALL, 2014. Application of Jacobi's representation theorem to locally multiplicatively convex topological R-algebras. In: Journal of Functional Analysis. 2014, 266(2), pp. 1041-1049. ISSN 0022-1236. eISSN 1096-0783. Available under: doi: 10.1016/j.jfa.2013.09.001BibTex
@article{Ghasemi2014Appli-26398, year={2014}, doi={10.1016/j.jfa.2013.09.001}, title={Application of Jacobi's representation theorem to locally multiplicatively convex topological R-algebras}, number={2}, volume={266}, issn={0022-1236}, journal={Journal of Functional Analysis}, pages={1041--1049}, author={Ghasemi, Mehdi and Kuhlmann, Salma and Marshall, Murray} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26398"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-18T12:54:50Z</dc:date> <dcterms:bibliographicCitation>Journal of Functional Analysis ; 266 (2014), 2. - S. 1041-1049</dcterms:bibliographicCitation> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:issued>2014</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Application of Jacobi's representation theorem to locally multiplicatively convex topological R-algebras</dcterms:title> <dc:creator>Kuhlmann, Salma</dc:creator> <dc:creator>Ghasemi, Mehdi</dc:creator> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Kuhlmann, Salma</dc:contributor> <dc:contributor>Marshall, Murray</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-18T12:54:50Z</dcterms:available> <dc:creator>Marshall, Murray</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26398"/> <dc:contributor>Ghasemi, Mehdi</dc:contributor> <dcterms:abstract xml:lang="eng">Let A be a commutative unital RR-algebra and let ρ be a seminorm on A which satisfies ρ(ab)⩽ρ(a)ρ(b)ρ(ab)⩽ρ(a)ρ(b). We apply T. Jacobi's representation theorem to determine the closure of a ∑A<sup>2d</sup>-module S of A in the topology induced by ρ, for any integer d⩾1d⩾1. We show that this closure is exactly the set of all elements a∈Aa∈A such that α(a)⩾0α(a)⩾0 for every ρ-continuous RR-algebra homomorphism α:A→Rα:A→R with α(S)⊆[0,∞)α(S)⊆[0,∞), and that this result continues to hold when ρ is replaced by any locally multiplicatively convex topology τ on A. We obtain a representation of any linear functional L:A→RL:A→R which is continuous with respect to any such ρ or τ and nonnegative on S as integration with respect to a unique Radon measure on the space of all real-valued RR-algebra homomorphisms on A, and we characterize the support of the measure obtained in this way.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>