Improving the Robustness of Scagnostics
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper, we examine the robustness of scagnostics through a series of theoretical and empirical studies. First, we investigate the sensitivity of scagnostics by employing perturbing operations on more than 60M synthetic and real-world scatterplots. We found that two scagnostic measures, Outlying and Clumpy, are overly sensitive to data binning. To understand how these measures align with human judgments of visual features, we conducted a study with 24 participants, which reveals that i) humans are not sensitive to small perturbations of the data that cause large changes in both measures, and ii) the perception of clumpiness heavily depends on per-cluster topologies and structures. Motivated by these results, we propose Robust Scagnostics (RScag) by combining adaptive binning with a hierarchy-based form of scagnostics. An analysis shows that RScag improves on the robustness of original scagnostics, aligns better with human judgments, and is equally fast as the traditional scagnostic measures.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WANG, Yunhai, Zeyu WANG, Tingting LIU, Michael CORRELL, Zhanglin CHENG, Oliver DEUSSEN, Michael SEDLMAIR, 2020. Improving the Robustness of Scagnostics. In: IEEE Transactions on Visualization and Computer Graphics. Institute of Electrical and Electronics Engineers (IEEE). 2020, 26(1), S. 759-769. ISSN 1077-2626. eISSN 1941-0506. Verfügbar unter: doi: 10.1109/TVCG.2019.2934796BibTex
@article{Wang2020-01Impro-47041, year={2020}, doi={10.1109/TVCG.2019.2934796}, title={Improving the Robustness of Scagnostics}, number={1}, volume={26}, issn={1077-2626}, journal={IEEE Transactions on Visualization and Computer Graphics}, pages={759--769}, author={Wang, Yunhai and Wang, Zeyu and Liu, Tingting and Correll, Michael and Cheng, Zhanglin and Deussen, Oliver and Sedlmair, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/47041"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-26T12:57:16Z</dcterms:available> <dcterms:issued>2020-01</dcterms:issued> <dc:contributor>Wang, Yunhai</dc:contributor> <dc:creator>Correll, Michael</dc:creator> <dc:language>eng</dc:language> <dc:creator>Deussen, Oliver</dc:creator> <dc:contributor>Liu, Tingting</dc:contributor> <dc:contributor>Wang, Zeyu</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47041"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Liu, Tingting</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-26T12:57:16Z</dc:date> <dc:creator>Wang, Yunhai</dc:creator> <dc:contributor>Sedlmair, Michael</dc:contributor> <dcterms:abstract xml:lang="eng">In this paper, we examine the robustness of scagnostics through a series of theoretical and empirical studies. First, we investigate the sensitivity of scagnostics by employing perturbing operations on more than 60M synthetic and real-world scatterplots. We found that two scagnostic measures, Outlying and Clumpy, are overly sensitive to data binning. To understand how these measures align with human judgments of visual features, we conducted a study with 24 participants, which reveals that i) humans are not sensitive to small perturbations of the data that cause large changes in both measures, and ii) the perception of clumpiness heavily depends on per-cluster topologies and structures. Motivated by these results, we propose Robust Scagnostics (RScag) by combining adaptive binning with a hierarchy-based form of scagnostics. An analysis shows that RScag improves on the robustness of original scagnostics, aligns better with human judgments, and is equally fast as the traditional scagnostic measures.</dcterms:abstract> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47041/1/Wang_2-tx3j0pwglva38.PDF"/> <dcterms:title>Improving the Robustness of Scagnostics</dcterms:title> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47041/1/Wang_2-tx3j0pwglva38.PDF"/> <dc:contributor>Deussen, Oliver</dc:contributor> <dc:contributor>Correll, Michael</dc:contributor> <dc:contributor>Cheng, Zhanglin</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Sedlmair, Michael</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Cheng, Zhanglin</dc:creator> <dc:creator>Wang, Zeyu</dc:creator> </rdf:Description> </rdf:RDF>