Publikation:

Improving the Robustness of Scagnostics

Lade...
Vorschaubild

Dateien

Wang_2-tx3j0pwglva38.PDF
Wang_2-tx3j0pwglva38.PDFGröße: 2.55 MBDownloads: 3

Datum

2020

Autor:innen

Wang, Yunhai
Wang, Zeyu
Liu, Tingting
Correll, Michael
Cheng, Zhanglin
Sedlmair, Michael

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz
oops

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Transactions on Visualization and Computer Graphics. Institute of Electrical and Electronics Engineers (IEEE). 2020, 26(1), S. 759-769. ISSN 1077-2626. eISSN 1941-0506. Verfügbar unter: doi: 10.1109/TVCG.2019.2934796

Zusammenfassung

In this paper, we examine the robustness of scagnostics through a series of theoretical and empirical studies. First, we investigate the sensitivity of scagnostics by employing perturbing operations on more than 60M synthetic and real-world scatterplots. We found that two scagnostic measures, Outlying and Clumpy, are overly sensitive to data binning. To understand how these measures align with human judgments of visual features, we conducted a study with 24 participants, which reveals that i) humans are not sensitive to small perturbations of the data that cause large changes in both measures, and ii) the perception of clumpiness heavily depends on per-cluster topologies and structures. Motivated by these results, we propose Robust Scagnostics (RScag) by combining adaptive binning with a hierarchy-based form of scagnostics. An analysis shows that RScag improves on the robustness of original scagnostics, aligns better with human judgments, and is equally fast as the traditional scagnostic measures.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690WANG, Yunhai, Zeyu WANG, Tingting LIU, Michael CORRELL, Zhanglin CHENG, Oliver DEUSSEN, Michael SEDLMAIR, 2020. Improving the Robustness of Scagnostics. In: IEEE Transactions on Visualization and Computer Graphics. Institute of Electrical and Electronics Engineers (IEEE). 2020, 26(1), S. 759-769. ISSN 1077-2626. eISSN 1941-0506. Verfügbar unter: doi: 10.1109/TVCG.2019.2934796
BibTex
@article{Wang2020-01Impro-47041,
  year={2020},
  doi={10.1109/TVCG.2019.2934796},
  title={Improving the Robustness of Scagnostics},
  number={1},
  volume={26},
  issn={1077-2626},
  journal={IEEE Transactions on Visualization and Computer Graphics},
  pages={759--769},
  author={Wang, Yunhai and Wang, Zeyu and Liu, Tingting and Correll, Michael and Cheng, Zhanglin and Deussen, Oliver and Sedlmair, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/47041">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-26T12:57:16Z</dcterms:available>
    <dcterms:issued>2020-01</dcterms:issued>
    <dc:contributor>Wang, Yunhai</dc:contributor>
    <dc:creator>Correll, Michael</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dc:contributor>Liu, Tingting</dc:contributor>
    <dc:contributor>Wang, Zeyu</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47041"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Liu, Tingting</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-26T12:57:16Z</dc:date>
    <dc:creator>Wang, Yunhai</dc:creator>
    <dc:contributor>Sedlmair, Michael</dc:contributor>
    <dcterms:abstract xml:lang="eng">In this paper, we examine the robustness of scagnostics through a series of theoretical and empirical studies. First, we investigate the sensitivity of scagnostics by employing perturbing operations on more than 60M synthetic and real-world scatterplots. We found that two scagnostic measures, Outlying and Clumpy, are overly sensitive to data binning. To understand how these measures align with human judgments of visual features, we conducted a study with 24 participants, which reveals that i) humans are not sensitive to small perturbations of the data that cause large changes in both measures, and ii) the perception of clumpiness heavily depends on per-cluster topologies and structures. Motivated by these results, we propose Robust Scagnostics (RScag) by combining adaptive binning with a hierarchy-based form of scagnostics. An analysis shows that RScag improves on the robustness of original scagnostics, aligns better with human judgments, and is equally fast as the traditional scagnostic measures.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47041/1/Wang_2-tx3j0pwglva38.PDF"/>
    <dcterms:title>Improving the Robustness of Scagnostics</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47041/1/Wang_2-tx3j0pwglva38.PDF"/>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dc:contributor>Correll, Michael</dc:contributor>
    <dc:contributor>Cheng, Zhanglin</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Sedlmair, Michael</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Cheng, Zhanglin</dc:creator>
    <dc:creator>Wang, Zeyu</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen