Understanding Social Feedback in Biological Collectives with Smoothed Model Checking

Loading...
Thumbnail Image
Date
2022
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a conference collection
Publication status
Published
Published in
Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning : 11th International Symposium, ISoLA 2022, Proceedings, Part III / Margaria, Tiziana; Steffen, Bernhard (ed.). - Cham : Springer, 2022. - (Lecture Notes in Computer Science ; 13703). - pp. 181-198. - ISSN 0302-9743. - eISSN 1611-3349. - ISBN 978-3-031-19758-1
Abstract
Biological groups exhibit fascinating collective dynamics without centralised control, through only local interactions between individuals. Desirable group behaviours are typically linked to a certain fitness function, which the group robustly performs under different perturbations in, for instance, group structure, group size, noise, or environmental factors. Deriving this fitness function is an important step towards understanding the collective response, yet it easily becomes non-trivial in the context of complex collective dynamics. In particular, understanding the social feedback - how the collective behaviour adapts to changes in the group size - requires dealing with complex models and limited experimental data. In this work, we assume that the collective response is experimentally observed for a chosen, finite set of group sizes. Based on such data, we propose a framework which allows to: (i) predict the collective response for any given group size, and (ii) automatically propose a fitness function. We use Smoothed Model Checking, an approach based on Gaussian Process Classification, to develop a methodology that is scalable, flexible, and data-efficient; We specify the fitness function as a template temporal logic formula with unknown parameters, and we automatically infer the missing quantities from data. We evaluate the framework over a case study of a collective stinging defence mechanism in honeybee colonies.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Social feedback, Gaussian processes, Biological collectives, Smoothed model checking
Conference
ISoLA 2022 : Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning, Oct 22, 2022 - Oct 30, 2022, Rhodes, Greece
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690KLEIN, Julia, Tatjana PETROV, 2022. Understanding Social Feedback in Biological Collectives with Smoothed Model Checking. ISoLA 2022 : Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning. Rhodes, Greece, Oct 22, 2022 - Oct 30, 2022. In: MARGARIA, Tiziana, ed., Bernhard STEFFEN, ed.. Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning : 11th International Symposium, ISoLA 2022, Proceedings, Part III. Cham:Springer, pp. 181-198. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-031-19758-1. Available under: doi: 10.1007/978-3-031-19759-8_12
BibTex
@inproceedings{Klein2022-10-17Under-59812,
  year={2022},
  doi={10.1007/978-3-031-19759-8_12},
  title={Understanding Social Feedback in Biological Collectives with Smoothed Model Checking},
  number={13703},
  isbn={978-3-031-19758-1},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning : 11th International Symposium, ISoLA 2022, Proceedings, Part III},
  pages={181--198},
  editor={Margaria, Tiziana and Steffen, Bernhard},
  author={Klein, Julia and Petrov, Tatjana}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59812">
    <dc:creator>Petrov, Tatjana</dc:creator>
    <dc:contributor>Klein, Julia</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59812/1/Klein_2-tyja396c2vfl9.pdf"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59812"/>
    <dc:contributor>Petrov, Tatjana</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59812/1/Klein_2-tyja396c2vfl9.pdf"/>
    <dc:creator>Klein, Julia</dc:creator>
    <dcterms:abstract xml:lang="eng">Biological groups exhibit fascinating collective dynamics without centralised control, through only local interactions between individuals. Desirable group behaviours are typically linked to a certain fitness function, which the group robustly performs under different perturbations in, for instance, group structure, group size, noise, or environmental factors. Deriving this fitness function is an important step towards understanding the collective response, yet it easily becomes non-trivial in the context of complex collective dynamics. In particular, understanding the social feedback - how the collective behaviour adapts to changes in the group size - requires dealing with complex models and limited experimental data. In this work, we assume that the collective response is experimentally observed for a chosen, finite set of group sizes. Based on such data, we propose a framework which allows to: (i) predict the collective response for any given group size, and (ii) automatically propose a fitness function. We use Smoothed Model Checking, an approach based on Gaussian Process Classification, to develop a methodology that is scalable, flexible, and data-efficient; We specify the fitness function as a template temporal logic formula with unknown parameters, and we automatically infer the missing quantities from data. We evaluate the framework over a case study of a collective stinging defence mechanism in honeybee colonies.</dcterms:abstract>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Understanding Social Feedback in Biological Collectives with Smoothed Model Checking</dcterms:title>
    <dcterms:issued>2022-10-17</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-19T09:11:11Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-19T09:11:11Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed