Publikation:

Understanding Social Feedback in Biological Collectives with Smoothed Model Checking

Lade...
Vorschaubild

Dateien

Klein_2-tyja396c2vfl9.pdf
Klein_2-tyja396c2vfl9.pdfGröße: 1.34 MBDownloads: 115

Datum

2022

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

MARGARIA, Tiziana, ed., Bernhard STEFFEN, ed.. Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning : 11th International Symposium, ISoLA 2022, Proceedings, Part III. Cham: Springer, 2022, pp. 181-198. Lecture Notes in Computer Science. 13703. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-031-19758-1. Available under: doi: 10.1007/978-3-031-19759-8_12

Zusammenfassung

Biological groups exhibit fascinating collective dynamics without centralised control, through only local interactions between individuals. Desirable group behaviours are typically linked to a certain fitness function, which the group robustly performs under different perturbations in, for instance, group structure, group size, noise, or environmental factors. Deriving this fitness function is an important step towards understanding the collective response, yet it easily becomes non-trivial in the context of complex collective dynamics. In particular, understanding the social feedback - how the collective behaviour adapts to changes in the group size - requires dealing with complex models and limited experimental data. In this work, we assume that the collective response is experimentally observed for a chosen, finite set of group sizes. Based on such data, we propose a framework which allows to: (i) predict the collective response for any given group size, and (ii) automatically propose a fitness function. We use Smoothed Model Checking, an approach based on Gaussian Process Classification, to develop a methodology that is scalable, flexible, and data-efficient; We specify the fitness function as a template temporal logic formula with unknown parameters, and we automatically infer the missing quantities from data. We evaluate the framework over a case study of a collective stinging defence mechanism in honeybee colonies.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Social feedback, Gaussian processes, Biological collectives, Smoothed model checking

Konferenz

ISoLA 2022 : Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning, 22. Okt. 2022 - 30. Okt. 2022, Rhodes, Greece
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KLEIN, Julia, Tatjana PETROV, 2022. Understanding Social Feedback in Biological Collectives with Smoothed Model Checking. ISoLA 2022 : Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning. Rhodes, Greece, 22. Okt. 2022 - 30. Okt. 2022. In: MARGARIA, Tiziana, ed., Bernhard STEFFEN, ed.. Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning : 11th International Symposium, ISoLA 2022, Proceedings, Part III. Cham: Springer, 2022, pp. 181-198. Lecture Notes in Computer Science. 13703. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-031-19758-1. Available under: doi: 10.1007/978-3-031-19759-8_12
BibTex
@inproceedings{Klein2022-10-17Under-59812,
  year={2022},
  doi={10.1007/978-3-031-19759-8_12},
  title={Understanding Social Feedback in Biological Collectives with Smoothed Model Checking},
  number={13703},
  isbn={978-3-031-19758-1},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning : 11th International Symposium, ISoLA 2022, Proceedings, Part III},
  pages={181--198},
  editor={Margaria, Tiziana and Steffen, Bernhard},
  author={Klein, Julia and Petrov, Tatjana}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59812">
    <dc:creator>Petrov, Tatjana</dc:creator>
    <dc:contributor>Klein, Julia</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59812/1/Klein_2-tyja396c2vfl9.pdf"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59812"/>
    <dc:contributor>Petrov, Tatjana</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59812/1/Klein_2-tyja396c2vfl9.pdf"/>
    <dc:creator>Klein, Julia</dc:creator>
    <dcterms:abstract xml:lang="eng">Biological groups exhibit fascinating collective dynamics without centralised control, through only local interactions between individuals. Desirable group behaviours are typically linked to a certain fitness function, which the group robustly performs under different perturbations in, for instance, group structure, group size, noise, or environmental factors. Deriving this fitness function is an important step towards understanding the collective response, yet it easily becomes non-trivial in the context of complex collective dynamics. In particular, understanding the social feedback - how the collective behaviour adapts to changes in the group size - requires dealing with complex models and limited experimental data. In this work, we assume that the collective response is experimentally observed for a chosen, finite set of group sizes. Based on such data, we propose a framework which allows to: (i) predict the collective response for any given group size, and (ii) automatically propose a fitness function. We use Smoothed Model Checking, an approach based on Gaussian Process Classification, to develop a methodology that is scalable, flexible, and data-efficient; We specify the fitness function as a template temporal logic formula with unknown parameters, and we automatically infer the missing quantities from data. We evaluate the framework over a case study of a collective stinging defence mechanism in honeybee colonies.</dcterms:abstract>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Understanding Social Feedback in Biological Collectives with Smoothed Model Checking</dcterms:title>
    <dcterms:issued>2022-10-17</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-19T09:11:11Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-19T09:11:11Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen