Publikation: The adaptive value of shoot differentiation in deciduous trees and its evolutionary relevance
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Pronounced long shoot/short shoot differentiation is typical for deciduous angiosperm trees. It also occurs in a number of gymnosperms and very few evergreen angiosperm trees. The study of 719 angiosperm tree species (602 deciduous and 117 evergreen species) demonstrated that the deciduous condition is nearly always associated with shoot differentiation. Detailed measurements in 38 angiosperms showed that the leaf area of an entire short shoot equals the leaf area of a single long shoot leaf of the same species and individual. In the few cases where the leaf area of the short shoot is slightly larger than that of a single long-shoot leaf, the short shoot leaves shade each other and the projection of the short shoot equals the area of a single long shoot leaf. Calculations of the stem biomass needed to expose a given assimilatory surface show two interesting aspects. First, the stem biomass (dry weight) to expose leaf surface is about 10 times less in short shoots than in long shoots. Second, this biomass in long shoots and short shoots appears to be species independent. Regarding shoot structure efficiency, leaf size and shape do not matter. Some evergreen species resemble in all parameters more to deciduous species than to typical evergreen species. Phytogeographical data as well as morphological data suggest that these atypical evergreen species are derived from deciduous ancestors. As measured parameters differ markedly between all gymnosperms, except Ginkgo, and angiosperms, we suppose that the evolutionary pathway leading to shoot differentiation was different for gymnosperms and angiosperms.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DÖRKEN, Veit, Thomas STÜTZEL, 2009. The adaptive value of shoot differentiation in deciduous trees and its evolutionary relevance. In: Boletín de la Sociedad Argentina de Botánica. 2009, 44(3-4), pp. 421-439. ISSN 0373-580X. eISSN 1851-2372BibTex
@article{Dorken2009adapt-30453, year={2009}, title={The adaptive value of shoot differentiation in deciduous trees and its evolutionary relevance}, url={http://www.scielo.org.ar/scielo.php?pid=S1851-23722009000200017&script=sci_arttext}, number={3-4}, volume={44}, issn={0373-580X}, journal={Boletín de la Sociedad Argentina de Botánica}, pages={421--439}, author={Dörken, Veit and Stützel, Thomas} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30453"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30453"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Stützel, Thomas</dc:contributor> <dcterms:abstract xml:lang="eng">Pronounced long shoot/short shoot differentiation is typical for deciduous angiosperm trees. It also occurs in a number of gymnosperms and very few evergreen angiosperm trees. The study of 719 angiosperm tree species (602 deciduous and 117 evergreen species) demonstrated that the deciduous condition is nearly always associated with shoot differentiation. Detailed measurements in 38 angiosperms showed that the leaf area of an entire short shoot equals the leaf area of a single long shoot leaf of the same species and individual. In the few cases where the leaf area of the short shoot is slightly larger than that of a single long-shoot leaf, the short shoot leaves shade each other and the projection of the short shoot equals the area of a single long shoot leaf. Calculations of the stem biomass needed to expose a given assimilatory surface show two interesting aspects. First, the stem biomass (dry weight) to expose leaf surface is about 10 times less in short shoots than in long shoots. Second, this biomass in long shoots and short shoots appears to be species independent. Regarding shoot structure efficiency, leaf size and shape do not matter. Some evergreen species resemble in all parameters more to deciduous species than to typical evergreen species. Phytogeographical data as well as morphological data suggest that these atypical evergreen species are derived from deciduous ancestors. As measured parameters differ markedly between all gymnosperms, except Ginkgo, and angiosperms, we suppose that the evolutionary pathway leading to shoot differentiation was different for gymnosperms and angiosperms.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:issued>2009</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-20T10:04:01Z</dc:date> <dc:language>eng</dc:language> <dc:creator>Stützel, Thomas</dc:creator> <dcterms:title>The adaptive value of shoot differentiation in deciduous trees and its evolutionary relevance</dcterms:title> <dc:contributor>Dörken, Veit</dc:contributor> <dc:creator>Dörken, Veit</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-20T10:04:01Z</dcterms:available> </rdf:Description> </rdf:RDF>