Publikation:

Optimal convergence rates in non-parametric regression with fractional time series errors

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2013

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Time Series Analysis. 2013, 34(1), pp. 30-39. ISSN 0143-9782. eISSN 1467-9892. Available under: doi: 10.1111/j.1467-9892.2012.00811.x

Zusammenfassung

Consider the estimation of g(ν), the νth derivative of the mean function, in a fixed-design non-parametric regression model with stationary time series errors ξi. We assume that , ξi are obtained by applying an invertible linear filter to iid innovations, and the spectral density of ξi has the form as λ → 0 with constants cf > 0 and α ∈ (−1,1). Under regularity conditions, the optimal convergence rate of is shown to be with r = (1 − α)(k − ν)/(2k+1 − α). This rate is achieved by local polynomial fitting. Moreover, in spite of including long memory and antipersistence, the required conditions on the innovation distribution turn out to be the same as in non-parametric regression with iid errors.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
310 Statistik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FENG, Yuanhua, Jan BERAN, 2013. Optimal convergence rates in non-parametric regression with fractional time series errors. In: Journal of Time Series Analysis. 2013, 34(1), pp. 30-39. ISSN 0143-9782. eISSN 1467-9892. Available under: doi: 10.1111/j.1467-9892.2012.00811.x
BibTex
@article{Feng2013Optim-24965,
  year={2013},
  doi={10.1111/j.1467-9892.2012.00811.x},
  title={Optimal convergence rates in non-parametric regression with fractional time series errors},
  number={1},
  volume={34},
  issn={0143-9782},
  journal={Journal of Time Series Analysis},
  pages={30--39},
  author={Feng, Yuanhua and Beran, Jan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24965">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-10-28T09:35:47Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Beran, Jan</dc:contributor>
    <dcterms:title>Optimal convergence rates in non-parametric regression with fractional time series errors</dcterms:title>
    <dc:contributor>Feng, Yuanhua</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24965"/>
    <dc:creator>Feng, Yuanhua</dc:creator>
    <dc:creator>Beran, Jan</dc:creator>
    <dcterms:abstract xml:lang="eng">Consider the estimation of g(ν), the νth derivative of the mean function, in a fixed-design non-parametric regression model with stationary time series errors ξi. We assume that , ξi are obtained by applying an invertible linear filter to iid innovations, and the spectral density of ξi has the form as λ → 0 with constants cf &gt; 0 and α  ∈  (−1,1). Under regularity conditions, the optimal convergence rate of is shown to be with r = (1 − α)(k − ν)/(2k+1 − α). This rate is achieved by local polynomial fitting. Moreover, in spite of including long memory and antipersistence, the required conditions on the innovation distribution turn out to be the same as in non-parametric regression with iid errors.</dcterms:abstract>
    <dcterms:bibliographicCitation>Journal of Time Series Analysis ; 34 (2013), 1. - S. 30-39</dcterms:bibliographicCitation>
    <dcterms:issued>2013</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-10-28T09:35:47Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen