Publikation: Optimal convergence rates in non-parametric regression with fractional time series errors
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Consider the estimation of g(ν), the νth derivative of the mean function, in a fixed-design non-parametric regression model with stationary time series errors ξi. We assume that , ξi are obtained by applying an invertible linear filter to iid innovations, and the spectral density of ξi has the form as λ → 0 with constants cf > 0 and α ∈ (−1,1). Under regularity conditions, the optimal convergence rate of is shown to be with r = (1 − α)(k − ν)/(2k+1 − α). This rate is achieved by local polynomial fitting. Moreover, in spite of including long memory and antipersistence, the required conditions on the innovation distribution turn out to be the same as in non-parametric regression with iid errors.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FENG, Yuanhua, Jan BERAN, 2013. Optimal convergence rates in non-parametric regression with fractional time series errors. In: Journal of Time Series Analysis. 2013, 34(1), pp. 30-39. ISSN 0143-9782. eISSN 1467-9892. Available under: doi: 10.1111/j.1467-9892.2012.00811.xBibTex
@article{Feng2013Optim-24965, year={2013}, doi={10.1111/j.1467-9892.2012.00811.x}, title={Optimal convergence rates in non-parametric regression with fractional time series errors}, number={1}, volume={34}, issn={0143-9782}, journal={Journal of Time Series Analysis}, pages={30--39}, author={Feng, Yuanhua and Beran, Jan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24965"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-10-28T09:35:47Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Beran, Jan</dc:contributor> <dcterms:title>Optimal convergence rates in non-parametric regression with fractional time series errors</dcterms:title> <dc:contributor>Feng, Yuanhua</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24965"/> <dc:creator>Feng, Yuanhua</dc:creator> <dc:creator>Beran, Jan</dc:creator> <dcterms:abstract xml:lang="eng">Consider the estimation of g(ν), the νth derivative of the mean function, in a fixed-design non-parametric regression model with stationary time series errors ξi. We assume that , ξi are obtained by applying an invertible linear filter to iid innovations, and the spectral density of ξi has the form as λ → 0 with constants cf > 0 and α ∈ (−1,1). Under regularity conditions, the optimal convergence rate of is shown to be with r = (1 − α)(k − ν)/(2k+1 − α). This rate is achieved by local polynomial fitting. Moreover, in spite of including long memory and antipersistence, the required conditions on the innovation distribution turn out to be the same as in non-parametric regression with iid errors.</dcterms:abstract> <dcterms:bibliographicCitation>Journal of Time Series Analysis ; 34 (2013), 1. - S. 30-39</dcterms:bibliographicCitation> <dcterms:issued>2013</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-10-28T09:35:47Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>