PhytoNodes for Environmental Monitoring : Stimulus Classification based on Natural Plant Signals in an Interactive Energy-efficient Bio-hybrid System
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Cities worldwide are growing, putting bigger populations at risk due to urban pollution. Environmental monitoring is essential and requires a major paradigm shift. We need green and inexpensive means of measuring at high sensor densities and with high user acceptance. We propose using phytosensing: using natural living plants as sensors. In plant experiments, we gather electrophysiological data with sensor nodes. We expose the plant Zamioculcas zamiifolia to five different stimuli: wind, temperature, blue light, red light, or no stimulus. Using that data, we train ten different types of artificial neural networks to classify measured time series according to the respective stimulus. We achieve good accuracy and succeed in running trained classifying artificial neural networks online on the microcontroller of our small energy-efficient sensor node. To indicate later possible use cases, we showcase the system by sending a notification to a smartphone application once our continuous signal analysis detects a given stimulus.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BUSS, Eduard, Tim-Lucas RABBEL, Viktor HORVAT, Marko KRIZMANCIC, Stjepan BOGDAN, Mostafa WAHBY, Heiko HAMANN, 2022. PhytoNodes for Environmental Monitoring : Stimulus Classification based on Natural Plant Signals in an Interactive Energy-efficient Bio-hybrid System. GoodIT '22 : 2022 ACM Conference on Information Technology for Social Good. Limassol, Cyprus, 7. Sept. 2022 - 9. Sept. 2022. In: GoodIT '22 : Proceedings of the 2022 ACM Conference on Information Technology for Social Good. New York, NY: ACM, 2022, pp. 258-264. ISBN 978-1-4503-9284-6. Available under: doi: 10.1145/3524458.3547266BibTex
@inproceedings{Buss2022Phyto-59708, year={2022}, doi={10.1145/3524458.3547266}, title={PhytoNodes for Environmental Monitoring : Stimulus Classification based on Natural Plant Signals in an Interactive Energy-efficient Bio-hybrid System}, isbn={978-1-4503-9284-6}, publisher={ACM}, address={New York, NY}, booktitle={GoodIT '22 : Proceedings of the 2022 ACM Conference on Information Technology for Social Good}, pages={258--264}, author={Buss, Eduard and Rabbel, Tim-Lucas and Horvat, Viktor and Krizmancic, Marko and Bogdan, Stjepan and Wahby, Mostafa and Hamann, Heiko} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59708"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59708/1/Buss_2-u46mmjabf1a22.pdf"/> <dc:contributor>Rabbel, Tim-Lucas</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Wahby, Mostafa</dc:creator> <dc:creator>Krizmancic, Marko</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59708/1/Buss_2-u46mmjabf1a22.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Rabbel, Tim-Lucas</dc:creator> <dc:creator>Bogdan, Stjepan</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Krizmancic, Marko</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Horvat, Viktor</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>terms-of-use</dc:rights> <dcterms:title>PhytoNodes for Environmental Monitoring : Stimulus Classification based on Natural Plant Signals in an Interactive Energy-efficient Bio-hybrid System</dcterms:title> <dc:contributor>Buss, Eduard</dc:contributor> <dc:contributor>Bogdan, Stjepan</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-13T11:38:51Z</dcterms:available> <dc:language>eng</dc:language> <dc:creator>Hamann, Heiko</dc:creator> <dc:contributor>Hamann, Heiko</dc:contributor> <dcterms:issued>2022</dcterms:issued> <dc:creator>Buss, Eduard</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59708"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-13T11:38:51Z</dc:date> <dcterms:abstract xml:lang="eng">Cities worldwide are growing, putting bigger populations at risk due to urban pollution. Environmental monitoring is essential and requires a major paradigm shift. We need green and inexpensive means of measuring at high sensor densities and with high user acceptance. We propose using phytosensing: using natural living plants as sensors. In plant experiments, we gather electrophysiological data with sensor nodes. We expose the plant Zamioculcas zamiifolia to five different stimuli: wind, temperature, blue light, red light, or no stimulus. Using that data, we train ten different types of artificial neural networks to classify measured time series according to the respective stimulus. We achieve good accuracy and succeed in running trained classifying artificial neural networks online on the microcontroller of our small energy-efficient sensor node. To indicate later possible use cases, we showcase the system by sending a notification to a smartphone application once our continuous signal analysis detects a given stimulus.</dcterms:abstract> <dc:contributor>Wahby, Mostafa</dc:contributor> <dc:creator>Horvat, Viktor</dc:creator> </rdf:Description> </rdf:RDF>