PhytoNodes for Environmental Monitoring : Stimulus Classification based on Natural Plant Signals in an Interactive Energy-efficient Bio-hybrid System

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2022
Autor:innen
Rabbel, Tim-Lucas
Horvat, Viktor
Krizmancic, Marko
Bogdan, Stjepan
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
GoodIT '22 : Proceedings of the 2022 ACM Conference on Information Technology for Social Good. New York, NY: ACM, 2022, pp. 258-264. ISBN 978-1-4503-9284-6. Available under: doi: 10.1145/3524458.3547266
Zusammenfassung

Cities worldwide are growing, putting bigger populations at risk due to urban pollution. Environmental monitoring is essential and requires a major paradigm shift. We need green and inexpensive means of measuring at high sensor densities and with high user acceptance. We propose using phytosensing: using natural living plants as sensors. In plant experiments, we gather electrophysiological data with sensor nodes. We expose the plant Zamioculcas zamiifolia to five different stimuli: wind, temperature, blue light, red light, or no stimulus. Using that data, we train ten different types of artificial neural networks to classify measured time series according to the respective stimulus. We achieve good accuracy and succeed in running trained classifying artificial neural networks online on the microcontroller of our small energy-efficient sensor node. To indicate later possible use cases, we showcase the system by sending a notification to a smartphone application once our continuous signal analysis detects a given stimulus.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
GoodIT '22 : 2022 ACM Conference on Information Technology for Social Good, 7. Sept. 2022 - 9. Sept. 2022, Limassol, Cyprus
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690BUSS, Eduard, Tim-Lucas RABBEL, Viktor HORVAT, Marko KRIZMANCIC, Stjepan BOGDAN, Mostafa WAHBY, Heiko HAMANN, 2022. PhytoNodes for Environmental Monitoring : Stimulus Classification based on Natural Plant Signals in an Interactive Energy-efficient Bio-hybrid System. GoodIT '22 : 2022 ACM Conference on Information Technology for Social Good. Limassol, Cyprus, 7. Sept. 2022 - 9. Sept. 2022. In: GoodIT '22 : Proceedings of the 2022 ACM Conference on Information Technology for Social Good. New York, NY: ACM, 2022, pp. 258-264. ISBN 978-1-4503-9284-6. Available under: doi: 10.1145/3524458.3547266
BibTex
@inproceedings{Buss2022Phyto-59708,
  year={2022},
  doi={10.1145/3524458.3547266},
  title={PhytoNodes for Environmental Monitoring : Stimulus Classification based on Natural Plant Signals in an Interactive Energy-efficient Bio-hybrid System},
  isbn={978-1-4503-9284-6},
  publisher={ACM},
  address={New York, NY},
  booktitle={GoodIT '22 : Proceedings of the 2022 ACM Conference on Information Technology for Social Good},
  pages={258--264},
  author={Buss, Eduard and Rabbel, Tim-Lucas and Horvat, Viktor and Krizmancic, Marko and Bogdan, Stjepan and Wahby, Mostafa and Hamann, Heiko}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59708">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59708/1/Buss_2-u46mmjabf1a22.pdf"/>
    <dc:contributor>Rabbel, Tim-Lucas</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Wahby, Mostafa</dc:creator>
    <dc:creator>Krizmancic, Marko</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59708/1/Buss_2-u46mmjabf1a22.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Rabbel, Tim-Lucas</dc:creator>
    <dc:creator>Bogdan, Stjepan</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Krizmancic, Marko</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Horvat, Viktor</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>PhytoNodes for Environmental Monitoring : Stimulus Classification based on Natural Plant Signals in an Interactive Energy-efficient Bio-hybrid System</dcterms:title>
    <dc:contributor>Buss, Eduard</dc:contributor>
    <dc:contributor>Bogdan, Stjepan</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-13T11:38:51Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dc:creator>Hamann, Heiko</dc:creator>
    <dc:contributor>Hamann, Heiko</dc:contributor>
    <dcterms:issued>2022</dcterms:issued>
    <dc:creator>Buss, Eduard</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59708"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-13T11:38:51Z</dc:date>
    <dcterms:abstract xml:lang="eng">Cities worldwide are growing, putting bigger populations at risk due to urban pollution. Environmental monitoring is essential and requires a major paradigm shift. We need green and inexpensive means of measuring at high sensor densities and with high user acceptance. We propose using phytosensing: using natural living plants as sensors. In plant experiments, we gather electrophysiological data with sensor nodes. We expose the plant Zamioculcas zamiifolia to five different stimuli: wind, temperature, blue light, red light, or no stimulus. Using that data, we train ten different types of artificial neural networks to classify measured time series according to the respective stimulus. We achieve good accuracy and succeed in running trained classifying artificial neural networks online on the microcontroller of our small energy-efficient sensor node. To indicate later possible use cases, we showcase the system by sending a notification to a smartphone application once our continuous signal analysis detects a given stimulus.</dcterms:abstract>
    <dc:contributor>Wahby, Mostafa</dc:contributor>
    <dc:creator>Horvat, Viktor</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen