Publikation:

Counterfactual rewards promote collective transport using individually controlled swarm microrobots

Lade...
Vorschaubild

Dateien

Heuthe_2-u5bc0by9hn3p8.pdf
Heuthe_2-u5bc0by9hn3p8.pdfGröße: 3.52 MBDownloads: 18

Datum

2024

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

Internationale Patentnummer

Link zur Lizenz
oops

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Science Robotics. American Association for the Advancement of Science (AAAS). 2024, 9(97). eISSN 2470-9476. Verfügbar unter: doi: 10.1126/scirobotics.ado5888

Zusammenfassung

Swarm robots offer fascinating opportunities to perform complex tasks beyond the capabilities of individual machines. Just as a swarm of ants collectively moves large objects, similar functions can emerge within a group of robots through individual strategies based on local sensing. However, realizing collective functions with individually controlled microrobots is particularly challenging because of their micrometer size, large number of degrees of freedom, strong thermal noise relative to the propulsion speed, and complex physical coupling between neighboring microrobots. Here, we implemented multiagent reinforcement learning (MARL) to generate a control strategy for up to 200 microrobots whose motions are individually controlled by laser spots. During the learning process, we used so-called counterfactual rewards that automatically assign credit to the individual microrobots, which allows fast and unbiased training. With the help of this efficient reward scheme, swarm microrobots learn to collectively transport a large cargo object to an arbitrary position and orientation, similar to ant swarms. We show that this flexible and versatile swarm robotic system is robust to variations in group size, the presence of malfunctioning units, and environmental noise. In addition, we let the robot swarms manipulate multiple objects simultaneously in a demonstration experiment, highlighting the benefits of distributed control and independent microrobot motion. Control strategies such as ours can potentially enable complex and automated assembly of mobile micromachines, programmable drug delivery capsules, and other advanced lab-on-a-chip applications.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HEUTHE, Veit-Lorenz Johannes, Emanuele PANIZON, Hongri GU, Clemens BECHINGER, 2024. Counterfactual rewards promote collective transport using individually controlled swarm microrobots. In: Science Robotics. American Association for the Advancement of Science (AAAS). 2024, 9(97). eISSN 2470-9476. Verfügbar unter: doi: 10.1126/scirobotics.ado5888
BibTex
@article{Heuthe2024-12-18Count-71747,
  title={Counterfactual rewards promote collective transport using individually controlled swarm microrobots},
  year={2024},
  doi={10.1126/scirobotics.ado5888},
  number={97},
  volume={9},
  journal={Science Robotics},
  author={Heuthe, Veit-Lorenz Johannes and Panizon, Emanuele and Gu, Hongri and Bechinger, Clemens}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71747">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:language>eng</dc:language>
    <dcterms:issued>2024-12-18</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Gu, Hongri</dc:contributor>
    <dcterms:abstract>Swarm robots offer fascinating opportunities to perform complex tasks beyond the capabilities of individual machines. Just as a swarm of ants collectively moves large objects, similar functions can emerge within a group of robots through individual strategies based on local sensing. However, realizing collective functions with individually controlled microrobots is particularly challenging because of their micrometer size, large number of degrees of freedom, strong thermal noise relative to the propulsion speed, and complex physical coupling between neighboring microrobots. Here, we implemented multiagent reinforcement learning (MARL) to generate a control strategy for up to 200 microrobots whose motions are individually controlled by laser spots. During the learning process, we used so-called counterfactual rewards that automatically assign credit to the individual microrobots, which allows fast and unbiased training. With the help of this efficient reward scheme, swarm microrobots learn to collectively transport a large cargo object to an arbitrary position and orientation, similar to ant swarms. We show that this flexible and versatile swarm robotic system is robust to variations in group size, the presence of malfunctioning units, and environmental noise. In addition, we let the robot swarms manipulate multiple objects simultaneously in a demonstration experiment, highlighting the benefits of distributed control and independent microrobot motion. Control strategies such as ours can potentially enable complex and automated assembly of mobile micromachines, programmable drug delivery capsules, and other advanced lab-on-a-chip applications.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Bechinger, Clemens</dc:creator>
    <dc:contributor>Heuthe, Veit-Lorenz Johannes</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Panizon, Emanuele</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-19T09:57:07Z</dcterms:available>
    <dc:creator>Heuthe, Veit-Lorenz Johannes</dc:creator>
    <dcterms:title>Counterfactual rewards promote collective transport using individually controlled swarm microrobots</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71747/4/Heuthe_2-u5bc0by9hn3p8.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Panizon, Emanuele</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71747"/>
    <dc:contributor>Bechinger, Clemens</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-19T09:57:07Z</dc:date>
    <dc:creator>Gu, Hongri</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71747/4/Heuthe_2-u5bc0by9hn3p8.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen